满分5 > 初中数学试题 >

如图1,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角三角形DCE...

如图1,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角三角形DCE中∠DCE是直角,点D在线段AC上.
(1)证明:B、C、E三点共线;
(2)若M是线段BE的中点,N是线段AD的中点,证明:MN=manfen5.com 满分网OM;
(3)将△DCE绕点C逆时针旋转α(0°<α<90°)后,记为△D1CE1(图2),若M1是线段BE1的中点,N1是线段AD1的中点,M1N1=manfen5.com 满分网OM1是否成立?若是,请证明;若不是,说明理由.

manfen5.com 满分网
(1)根据直径所对的圆周角为直角得到∠BCA=90°,∠DCE是直角,即可得到∠BCA+∠DCE=90°+90°=180°; (2)连接BD,AE,ON,延长BD交AE于F,先证明Rt△BCD≌Rt△ACE,得到BD=AE,∠EBD=∠CAE,则∠CAE+∠ADF=∠CBD+∠BDC=90°,即BD⊥AE,再利用三角形的中位线的性质得到ON=BD,OM=AE,ON∥BD,AE∥OM,于是有ON=OM,ON⊥OM,即△ONM为等腰直角三角形,即可得到结论; (3)证明的方法和(2)一样. (1)证明:∵AB是直径, ∴∠BCA=90°, 而等腰直角三角形DCE中∠DCE是直角, ∴∠BCA+∠DCE=90°+90°=180°, ∴B、C、E三点共线; (2)连接BD,AE,ON,延长BD交AE于F,如图1, ∵CB=CA,CD=CE, ∴Rt△BCD≌Rt△ACE, ∴BD=AE,∠EBD=∠CAE, ∴∠CAE+∠ADF=∠CBD+∠BDC=90°,即BF⊥AE, 又∵M是线段BE的中点,N是线段AD的中点,而O为AB的中点, ∴ON=BD,OM=AE,ON∥BD,AE∥OM; ∴ON=OM,ON⊥OM,即△ONM为等腰直角三角形, ∴MN=OM; (3)成立. 理由如下:如图2,连接BD1,AE1,ON1, ∵∠ACB-∠ACD1=∠D1CE1-∠ACD1, ∴∠BCD1=∠ACE1, 又∵CB=CA,CD1=CE1, ∴△BCD1≌△ACE1, 与(2)同理可证BD1⊥AE1,△ON1M1为等腰直角三角形, 从而有M1N1=OM1.
复制答案
考点分析:
相关试题推荐
已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C.
(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐标;
(2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标.
manfen5.com 满分网
查看答案
已知:在△ABC中,BC=2AC,∠DBC=∠ACB,BD=BC,CD交线段AB于点E.
(1)如图1,当∠ACB=90°时,则线段DE、CE之间的数量关系为______
(2)如图2,当∠ACB=120°时,求证:DE=3CE;
(3)如图3,在(2)的条件下,点F是BC边的中点,连接DF,DF与AB交于G,△DKG和△DBG关于直线DG对称(点B的对称点是点K,延长DK交AB于点H.若BH=10,求CE的长.
manfen5.com 满分网
查看答案
图甲是一个水桶模型示意图,水桶提手结构的平面图是轴对称图形.当点0到BC(或DE)的距离大于或等于的半径时(⊙O是桶口所在圆,半径为OA),提手才能从图甲的位置转到图乙的位置,这样的提手才合格.现用金属材料做了一个水桶提手(如图丙A-B-C-D-E-F,C-D是manfen5.com 满分网,其余是线段),O是AF的中点,桶口直径AF=34cm,AB=FE=5cm,∠ABC=∠FED=149°.请通过计箅判断这个水桶提手是否合格.
(参考数据:manfen5.com 满分网≈17.72,tan73.6°≈3.40,sin75.4°≈0.97)
manfen5.com 满分网
查看答案
2010年上半年,某种农产品受不良炒作的影响,价格一路上扬.8月初国家实施调控措施后,该农产品的价格开始回落.其中,1月份至7月份,该农产品的月平均价格y元/千克与月份x呈一次函数关系;7月份至12月份,月平均价袼y元/千克与月份x呈二次函数关系.已知1月、7月、9月和12月这四个月的月平均价格分别为8元/千克、26元/千克、14元/千克、11元/千克.
(1)分别求出当1≤x≤7和7≤x≤12时,y关于x的函数关系式;
(2)2010年的12个月中.这种农产品的月平均价格哪个月最低?最低为多少?
(3)若以12个月份的月平均价格的平均数为年平均价格,月平均价格高于年平均价格的月份有哪些?
查看答案
在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,对角线AC与BD相交于点O,线段OA,OB的中点分别为E,F.
(1)求证:△FOE≌△DOC;
(2)求sin∠OEF的值;
(3)若直线EF与线段AD,BC分别相交于点G,H,求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.