满分5 > 初中数学试题 >

如图,二次函数y=ax2+bx+c的图象交x轴于A(-1,0),B(2,0),交...

如图,二次函数y=ax2+bx+c的图象交x轴于A(-1,0),B(2,0),交y轴于C(0,-2),过A,C画直线.
(1)求二次函数的解析式;
(2)点P在x轴正半轴上,且PA=PC,求OP的长;
(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.
①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;
②若⊙M的半径为manfen5.com 满分网,求点M的坐标.
manfen5.com 满分网
(1)根据与x轴的两个交点A、B的坐标,设出二次函数交点式解析式y=a(x+1)(x-2),然后把点C的坐标代入计算求出a的值,即可得到二次函数解析式; (2)设OP=x,然后表示出PC、PA的长度,在Rt△POC中,利用勾股定理列式,然后解方程即可; (3)①根据相似三角形对应角相等可得∠MCH=∠CAO,然后分(i)点H在点C下方时,利用同位角相等,两直线平行判定CM∥x轴,从而得到点M的纵坐标与点C的纵坐标相同,是-2,代入抛物线解析式计算即可;(ii)点H在点C上方时,根据(2)的结论,点M为直线PC与抛物线的另一交点,求出直线PC的解析式,与抛物线的解析式联立求解即可得到点M的坐标; ②在x轴上取一点D,过点D作DE⊥AC于点E,可以证明△AED和△AOC相似,根据相似三角形对应边成比例列式求解即可得到AD的长度,然后分点D在点A的左边与右边两种情况求出OD的长度,从而得到点D的坐标,再作直线DM∥AC,然后求出直线DM的解析式,与抛物线解析式联立求解即可得到点M的坐标. 【解析】 (1)设该二次函数的解析式为:y=a(x+1)(x-2), 将x=0,y=-2代入,得-2=a(0+1)(0-2), 解得a=1, ∴抛物线的解析式为y=(x+1)(x-2), 即y=x2-x-2; (2)设OP=x,则PC=PA=x+1, 在Rt△POC中,由勾股定理,得x2+22=(x+1)2, 解得,x=, 即OP=; (3)①∵△CHM∽△AOC, ∴∠MCH=∠CAO, (i)如图1,当H在点C下方时, ∵∠MCH=∠CAO, ∴CM∥x轴, ∴yM=-2, ∴x2-x-2=-2, 解得x1=0(舍去),x2=1, ∴M(1,-2), (ii)如图1,当H在点C上方时, ∵∠MCH=∠CAO, ∴PA=PC,由(2)得,M′为直线CP与抛物线的另一交点, 设直线CM的解析式为y=kx-2, 把P(,0)的坐标代入,得k-2=0, 解得k=, ∴y=x-2, 由x-2=x2-x-2, 解得x1=0(舍去),x2=, 此时y=×-2=, ∴M′(,), ②在x轴上取一点D,如图(备用图),过点D作DE⊥AC于点E,使DE=, 在Rt△AOC中,AC===, ∵∠COA=∠DEA=90°,∠OAC=∠EAD, ∴△AED∽△AOC, ∴=, 即=, 解得AD=2, ∴D(1,0)或D(-3,0). 过点D作DM∥AC,交抛物线于M,如图(备用图) 则直线DM的解析式为:y=-2x+2或y=-2x-6, 当-2x-6=x2-x-2时,即x2+x+4=0,方程无实数根, 当-2x+2=x2-x-2时,即x2+x-4=0,解得x1=,x2=, ∴点M的坐标为(,3+)或(,3-).
复制答案
考点分析:
相关试题推荐
邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图1,▱ABCD中,若AB=1,BC=2,则▱ABCD为1阶准菱形.
manfen5.com 满分网
(1)判断与推理:
①邻边长分别为2和3的平行四边形是______阶准菱形;
②小明为了剪去一个菱形,进行了如下操作:如图2,把▱ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE.请证明四边形ABFE是菱形.
(2)操作、探究与计算:
①已知▱ABCD的邻边长分别为1,a(a>1),且是3阶准菱形,请画出▱ABCD及裁剪线的示意图,并在图形下方写出a的值;
②已知▱ABCD的邻边长分别为a,b(a>b),满足a=6b+r,b=5r,请写出▱ABCD是几阶准菱形.
查看答案
为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表的部分信息:
                                 自来水销售价格污水处理价格 
 每户每月用水量单价:元/吨  单价:元/吨 
 17吨以下 a 0.80
 超过17吨但不超过30吨的部分 b 0.80
 超过30吨的部分 6.00 0.80
(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)
已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.
(1)求a、b的值;
(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?
查看答案
如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.
(1)求证:AC是⊙O的切线;
(2)已知sinA=manfen5.com 满分网,⊙O的半径为4,求图中阴影部分的面积.

manfen5.com 满分网 查看答案
某学校要成立一支由6名女生组成的礼仪队,初三两个班各选6名女生,分别组成甲队和乙队参加选拔.每位女生的身高统计如图,部分统计量如表:
 平均数标准差中位数
甲队1.720.038 
乙队 0.0251.70
(1)求甲队身高的中位数;
(2)求乙队身高的平均数及身高不小于1.70米的频率;
(3)如果选拔的标准是身高越整齐越好,那么甲、乙两队中哪一队将被录取?请说明理由.

manfen5.com 满分网 查看答案
如图,已知一次函数与反比例函数的图象交于点A(-4,-2)和B(a,4).
(1)求反比例函数的解析式和点B的坐标;
(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数的值?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.