满分5 > 初中数学试题 >

如图,山上有一根电线杆,山脚下有一矩形建筑物ABCD,在A、D、C三点测得电线杆...

如图,山上有一根电线杆,山脚下有一矩形建筑物ABCD,在A、D、C三点测得电线杆顶端F的仰角分别为∠α=48°,∠β=56°,∠γ=65°,测得矩形建筑物宽度AD=20m,高度DC=33m.请你从所测数据中作出选择,计算电线杆顶端到地面的高度FG.(精确到1m)(参考数据:sin48°≈0.7,cos48°≈0.7,tan48°≈1.1,sin56°≈0.8,cos56°≈0.6,tan56°≈1.5,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)

manfen5.com 满分网
将题目中所涉及到的仰俯角转换为直角三角形内的角,利用解直角三角形的知识求得线段GF的长即可. 【解析】 解法一:如图,延长AD交FG于点E.…(1分) 在Rt△FDE中,tanβ=, ∴DE=.…(2分) 在Rt△FCG中,tanγ=, ∴CG=. …(3分) ∵DE=CG,∴=. ∴=, 即=. …(5分) 解得FG===115.5≈116.…(7分) 答:电线杆顶端到地面的高度FG约是116m. …(8分) 解法二:如图,延长AD交FG于点E. …(1分) 在Rt△FDE中,tanβ=, ∴DE=. …(2分) 在Rt△FAE中,tanα=, ∴AE=.…(3分) ∵AE-DE=AD, ∴-=AD. …(5分) ∴FE=. ∴FG=FE+EG=FE+CD=+CD=115.5≈116. …(7分) 答:电线杆顶端到地面的高度FG约是116m. …(8分) 解法三:如图,延长AD交FG于点E. …(1分) 在Rt△FCG中,tanγ=, ∴CG=. …(2分) 在Rt△FAE中,tanα=, ∴AE=.…(3分) ∵AE-CG=AE-DE=AD, ∴-=AD. …(5分) 即-=AD. ∴FG==115.5≈116.…(7分) 答:电线杆顶端到地面的高度FG约是116m. …(8分)
复制答案
考点分析:
相关试题推荐
如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥AC,交AC的延长线于点E.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)若AE=8,⊙O的半径为5,求DE的长.

manfen5.com 满分网 查看答案
某越剧团准备在市大剧院演出,该剧院能容纳1200人.经调研,如果票价定为30元,那么门票可以全部售完,门票价格每增加1元,售出的门票数就减少20张.票价定为多少元时,门票收入最多?最多收入是多少?
查看答案
(1)如图1,一个小球从M处投入,通过管道自上而下落到A或B或C.已知小球从每个叉口落入左右两个管道的可能性是相等的.求投一个小球落到A的概率.
(2)如图2,有如下转盘实验:
实验一  先转动转盘①,再转动转盘①
实验二  先转动转盘①,再转动转盘②
实验三  先转动转盘①,再转动转盘③
实验四  先转动转盘①,再转动转盘④
其中,两次指针都落在红色区域的概率与(1)中小球落到A的概率相等的实验是______.(只需填入实验的序号)
manfen5.com 满分网
查看答案
一列快车上午10:00由甲地出发,匀速开往乙地,它与乙地的距离y(km)和行驶时间x(h)之间的部分函数关系如图所示.
(1)求y与x之间的函数关系式;
(2)一列慢车当天上午11:00由乙地出发,以100km/h的速度匀速开往甲地,当快车到达乙地时,求慢车与快车之间的距离.

manfen5.com 满分网 查看答案
写出下列命题的已知、求证,并完成证明过程.
命题:如果平行四边形的一条对角线平分它的一个内角,那么这个平行四边形是菱形.
已知:如图,______
求证:______
证明:

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.