满分5 > 初中数学试题 >

概念理解 把一个或几个图形分割后,不重叠、无缝隙的重新拼成另一个图形的过程叫做“...

概念理解
把一个或几个图形分割后,不重叠、无缝隙的重新拼成另一个图形的过程叫做“剖分--重拼”.如图1,一个梯形可以剖分--重拼为一个三角形;如图2,任意两个正方形可以剖分--重拼为一个正方形.
尝试操作
如图3,把三角形剖分--重拼为一个矩形.(只要画出示意图,不需说明操作步骤)
manfen5.com 满分网
阅读解释
如何把一个矩形ABCD(如图4)剖分--重拼为一个正方形呢?操作如下:
①画辅助图.作射线OX,在射线OX上截取OM=AB,MN=BC.以ON为直径作半圆,过点M作MI⊥射线OX,与半圆交于点I;
②图4中,在CD上取点F,使AF=MI,作BE⊥AF,垂足为E.把△ADF沿射线DC平移到△BCH的位置,把△AEB沿射线AF平移到△FGH的位置,得四边形EBHG.
请说明按照上述操作方法得到的四边形EBHG是正方形.
manfen5.com 满分网
拓展延伸
任意一个多边形是否可以通过若干次的剖分--重拼成一个正方形?如果可以,请简述操作步骤;如果不可以,请说明理由.
尝试操作:先作三角形的一条中位线,把三角形分成一个三角形与梯形,然后作出分成的三角形的高线,分别平移即可;或者先作一条中位线,然后过一个顶点作第三边的高线,把两个三角形平移即可; 阅读解释:连接OI、NI,先利用相似三角形对应边成比例证明IM2=OM•NM,根据操作方法可得AF2=AB•AD,然后证明△DFA和△EAB相似,根据相似三角形对应边成比例列式整理可得AF•BE=AB•AD,从而得到AF=BE,再根据四边形EBHG是平行四边形且有一个角是直角即可证明四边形EBHG是正方形; 拓展延伸:把多边形先剖分成若干个三角形,把三角形剖分成矩形,把矩形剖分成正方形,把每两个正方形剖分成一个正方形,最后即可得解. 【解析】 尝试操作, 答案不唯一,如: 阅读解释 在辅助图中,连接OI、NI. ∵ON是所作半圆的直径, ∴∠OIN=90°. ∵MI⊥ON, ∴∠OMI=∠IMN=90°且∠OIM=∠INM. ∴△OIM∽△INM. ∴=. 即IM2=OM•NM.…(3分) 在图4中,根据操作方法可知,AF2=AB•AD. ∵四边形ABCD是矩形,BE⊥AF, ∴DC∥AB,∠ADF=∠BEA=90°. ∴∠DFA=∠EAB. ∴△DFA∽△EAB. ∴=. 即AF•BE=AB•AD.(注:用面积法说明也可.)…(4分) ∴AF=BE.…(5分) 即BH=BE. 由操作方法知BE∥GH,BE=GH. ∴四边形EBHG是平行四边形. ∵∠GEB=90°, ∴四边形EBHG是正方形.…(6分) 拓展延伸 可以.采用以下剖分--重拼步骤: (1)将多边形剖分为若干三角形; (2)每个三角形剖分--重拼为一个矩形; (3)每个矩形剖分--重拼为一个正方形; (4)每两个正方形剖分--重拼为一个正方形.…(10分)
复制答案
考点分析:
相关试题推荐
(1)在学习《二次函数的图象和性质》时,我们从“数”和“形”两个方面对二次函数y=x2和y=(x+3)2进行了研究,现在让我们重温这一过程.
①填表(表中阴影部分不需填空):
x-6-5-4-3-2-1123
y=x2
y=(x+3)2
②从对应点的位置看,函数y=x2的图象与函数y=(x+3)2的图象的位置有什么关系?
(2)借鉴(1)中研究的经验,解决问题:
①把函数y=2x的图象向______(填“左”或“右”)平移______个单位长度可以得到函数y=2x+6的图象.
②直接写出函数y=manfen5.com 满分网(k、m是常数,k≠0,m>0)的两条不同类型的性质.
查看答案
如图,山上有一根电线杆,山脚下有一矩形建筑物ABCD,在A、D、C三点测得电线杆顶端F的仰角分别为∠α=48°,∠β=56°,∠γ=65°,测得矩形建筑物宽度AD=20m,高度DC=33m.请你从所测数据中作出选择,计算电线杆顶端到地面的高度FG.(精确到1m)(参考数据:sin48°≈0.7,cos48°≈0.7,tan48°≈1.1,sin56°≈0.8,cos56°≈0.6,tan56°≈1.5,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)

manfen5.com 满分网 查看答案
如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥AC,交AC的延长线于点E.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)若AE=8,⊙O的半径为5,求DE的长.

manfen5.com 满分网 查看答案
某越剧团准备在市大剧院演出,该剧院能容纳1200人.经调研,如果票价定为30元,那么门票可以全部售完,门票价格每增加1元,售出的门票数就减少20张.票价定为多少元时,门票收入最多?最多收入是多少?
查看答案
(1)如图1,一个小球从M处投入,通过管道自上而下落到A或B或C.已知小球从每个叉口落入左右两个管道的可能性是相等的.求投一个小球落到A的概率.
(2)如图2,有如下转盘实验:
实验一  先转动转盘①,再转动转盘①
实验二  先转动转盘①,再转动转盘②
实验三  先转动转盘①,再转动转盘③
实验四  先转动转盘①,再转动转盘④
其中,两次指针都落在红色区域的概率与(1)中小球落到A的概率相等的实验是______.(只需填入实验的序号)
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.