满分5 > 初中数学试题 >

如图1,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点....

如图1,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.
(1)求抛物线的解析式;
(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;
(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).
manfen5.com 满分网
(1)利用待定系数法求出二次函数解析式即可; (2)根据已知条件可求出OB的解析式为y=x,则向下平移m个单位长度后的解析式为:y=x-m.由于抛物线与直线只有一个公共点,意味着联立解析式后得到的一元二次方程,其根的判别式等于0,由此可求出m的值和D点坐标; (3)综合利用几何变换和相似关系求解. 方法一:翻折变换,将△NOB沿x轴翻折; 方法二:旋转变换,将△NOB绕原点顺时针旋转90°. 特别注意求出P点坐标之后,该点关于直线y=-x的对称点也满足题意,即满足题意的P点有两个,避免漏解. 【解析】 (1)∵抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4) ∴将A与B两点坐标代入得:,解得:, ∴抛物线的解析式是y=x2-3x. (2)设直线OB的解析式为y=k1x,由点B(4,4), 得:4=4k1,解得:k1=1 ∴直线OB的解析式为y=x, ∴直线OB向下平移m个单位长度后的解析式为:y=x-m, ∵点D在抛物线y=x2-3x上, ∴可设D(x,x2-3x), 又∵点D在直线y=x-m上, ∴x2-3x=x-m,即x2-4x+m=0, ∵抛物线与直线只有一个公共点, ∴△=16-4m=0, 解得:m=4, 此时x1=x2=2,y=x2-3x=-2, ∴D点的坐标为(2,-2). (3)∵直线OB的解析式为y=x,且A(3,0), ∴点A关于直线OB的对称点A′的坐标是(0,3), 根据轴对称性质和三线合一性质得出∠A′BO=∠ABO, 设直线A′B的解析式为y=k2x+3,过点(4,4), ∴4k2+3=4,解得:k2=, ∴直线A′B的解析式是y=, ∵∠NBO=∠ABO,∠A′BO=∠ABO, ∴BA′和BN重合, 即点N在直线A′B上, ∴设点N(n,),又点N在抛物线y=x2-3x上, ∴=n2-3n, 解得:n1=-,n2=4(不合题意,舍去) ∴N点的坐标为(-,). 方法一: 如图1,将△NOB沿x轴翻折,得到△N1OB1, 则N1(,),B1(4,-4), ∴O、D、B1都在直线y=-x上. ∵△P1OD∽△NOB,△NOB≌△N1OB1, ∴△P1OD∽△N1OB1, ∴, ∴点P1的坐标为(,). 将△OP1D沿直线y=-x翻折,可得另一个满足条件的点P2(,), 综上所述,点P的坐标是(,)或(,). 方法二: 如图2,将△NOB绕原点顺时针旋转90°,得到△N2OB2, 则N2(,),B2(4,-4), ∴O、D、B1都在直线y=-x上. ∵△P1OD∽△NOB,△NOB≌△N2OB2, ∴△P1OD∽△N2OB2, ∴, ∴点P1的坐标为(,). 将△OP1D沿直线y=-x翻折,可得另一个满足条件的点P2(,), 综上所述,点P的坐标是(,)或(,).
复制答案
考点分析:
相关试题推荐
如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).
(1)直接用含t的代数式分别表示:QB=______,PD=______
(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;
(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.
manfen5.com 满分网
查看答案
 如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D,AD交⊙O于点E.
(1)求证:AC平分∠DAB;
(2)若∠B=60°,CD=2manfen5.com 满分网,求AE的长.

manfen5.com 满分网 查看答案
某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分.
(1)小明考了68分,那么小明答对了多少问题?
(2)小亮获得二等奖(70分~90分),请你算算小亮答对了几道题?
查看答案
省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.
manfen5.com 满分网
(1)m=______%,这次共抽取______名学生进行调查;并补全条形图;
(2)在这次抽样调查中,采用哪种上学方式的人数最多?
(3)如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?
查看答案
(1)如图1,点E、F在AC上,AB∥CD,AB=CD,AE=CF,求证:△ABF≌△CDE
(2)如图2,方格纸中的每个小方格是边长为1个单位长度的正方形.
①画出将Rt△ABC向右平移5个单位长度后的Rt△A1B1C1
②再将Rt△A1B1C1绕点C1顺时针旋转90°,画出旋转后的Rt△A2B2C2,并求出旋转过程中线段A1C1所扫过的面积(结果保留π)
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.