满分5 >
初中数学试题 >
-是的( ) A.相反数 B.倒数 C.绝对值 D.算术平方根
-
是
的( )
A.相反数
B.倒数
C.绝对值
D.算术平方根
考点分析:
相关试题推荐
如图,抛物线与x轴交于A(-1,0),B (3,0)两点,与y轴交点C(0,-3)
(1)求抛物线的解析式以及顶点D的坐标;
(2)若M是线段BD的中点,连接CM,猜想线段CM与线段BD之间有怎样的数量关系,并证明你的猜想;
(3)在坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.
查看答案
如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC边于点D,E是边BC的中点,连接DE、OD,
(1)求证:直线DE是⊙O的切线;
(2)连接OC交DE于F,若OF=FC,试判断△ABC的形状,并说明理由;
(3)若
,求⊙O的半径.
查看答案
某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;
(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;
(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?
查看答案
已知,如图在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC,连AG.
(1)求证:FC=BE;
(2)若AD=DC=2,求AG的长.
查看答案
如图,已知在Rt△ABC中,∠C=90°,AD是∠BAC的角平分线,以AB上一点O为圆心,AD为弦作⊙O.
(1)在图中作出⊙O;(不写作法,保留作图痕迹)
(2)求证:BC为⊙O的切线.
查看答案