满分5 > 初中数学试题 >

如图所示, (1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°...

如图所示,
(1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°,连接BE、DF.将Rt△AEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明;
(2)将(1)中的正方形ABCD变为矩形ABCD,等腰Rt△AEF变为Rt△AEF,且AD=kAB,AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;
(3)将(2)中的矩形ABCD变为平行四边形ABCD,将Rt△AEF变为△AEF,且∠BAD=∠EAF=a,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用a表示出直线BE、DF形成的锐角β.
manfen5.com 满分网
(1)根据旋转的过程中线段的长度不变,得到AF=AE,又∠BAE与∠DAF都与∠BAF互余,所以∠BAE=∠DAF,所以△FAD≌△EAB,因此BE与DF相等,延长DF交BE于G,根据全等三角形的对应角相等和四边形的内角和等于360°求出∠EGF=90°,所以DF⊥BE;(2)等同(1)的方法,因为矩形的邻边不相等,但根据题意,可以得到对应边成比例,所以△FAD∽△EAB,所以DF=kBE,同理,根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EHF=90°,所以DF⊥BE; (3)与(2)的证明方法相同,但根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EAF+∠EHF=180°,所以DF与BE的夹角β=180°-α. 【解析】 (1)DF与BE互相垂直且相等. 证明:延长DF分别交AB、BE于点P、G(1分) 在正方形ABCD和等腰直角△AEF中 AD=AB,AF=AE, ∠BAD=∠EAF=90° ∴∠FAD=∠EAB ∴△FAD≌△EAB(2分) ∴∠AFD=∠AEB,DF=BE(3分) ∵∠AFD+∠AFG=180°, ∴∠AEG+∠AFG=180°, ∵∠EAF=90°, ∴∠EGF=180°-90°=90°, ∴DF⊥BE(5分) (2)数量关系改变,位置关系不变.DF=kBE,DF⊥BE.(7分) 延长DF交EB于点H, ∵AD=kAB,AF=kAE ∴=k,=k ∴= ∵∠BAD=∠EAF=a ∴∠FAD=∠EAB ∴△FAD∽△EAB(9分) ∴=k ∴DF=kBE(10分) ∵△FAD∽△EAB, ∴∠AFD=∠AEB, ∵∠AFD+∠AFH=180°, ∴∠AEH+∠AFH=180°, ∵∠EAF=90°, ∴∠EHF=180°-90°=90°, ∴DF⊥BE(5分) (3)不改变.DF=kBE,β=180°-a.(7分) 证法(一):延长DF交EB的延长线于点H, ∵AD=kAB,AF=kAE ∴=k,=k ∴= ∵∠BAD=∠EAF=a ∴∠FAD=∠EAB ∴△FAD∽△EAB(9分) ∴=k ∴DF=kBE(10分) 由△FAD∽△EAB得∠AFD=∠AEB ∵∠AFD+∠AFH=180° ∴∠AEB+∠AFH=180° ∵四边形AEHF的内角和为360°, ∴∠EAF+∠EHF=180° ∵∠EAF=α,∠EHF=β ∴a+β=180°∴β=180°-a(12分) 证法(二):DF=kBE的证法与证法(一)相同 延长DF分别交EB、AB的延长线于点H、G.由△FAD∽△EAB得∠ADF=∠ABE ∵∠ABE=∠GBH,∴∠ADF=∠GBH, ∵β=∠BHF=∠GBH+∠G∴β=∠ADF+∠G. 在△ADG中,∠BAD+∠ADF+∠G=180°,∠BAD=a ∴a+β=180°∴β=180°-a(12分) 证法(三):在平行四边形ABCD中AB∥CD可得到∠ABC+∠C=180° ∵∠EBA+∠ABC+∠CBH=180°∴∠C=∠EBA+∠CBH 在△BHP、△CDP中,由三角形内角和等于180°可得∠C+∠CDP=∠CBH+∠BHP ∴∠EBA+∠CBH+∠CDP=∠CBH+∠BHP ∴∠EBA+∠CDP=∠BHP 由△FAD∽△EAB得∠ADP=∠EBA ∴∠ADP+∠CDP=∠BHP即∠ADC=∠BHP ∵∠BAD+∠ADC=180°,∠BAD=a,∠BHP=β ∴a+β=180°∴β=180°-a(12分) (有不同解法,参照以上给分点,只要正确均得分.)
复制答案
考点分析:
相关试题推荐
某服装厂批发应季T恤衫,其单价y(元)与批发数量x(件)(x为正整数)之间的函数关系如图所示.
(1)直接写出y与x的函数关系式;
(2)一个批发商一次购进200件T恤衫,所花的钱数是多少元?(其他费用不计);
(3)若每件T恤衫的成本价是45元,当10O<X≤500件(x为正整数)时,求服装厂所获利润w(元)与x(件)之间的函数关系式,并求一次批发多少件时所获利润最大,最大利润是多少?

manfen5.com 满分网 查看答案
星期天,小强去水库大坝游玩,他站在大坝上的A处看到一棵大树的影子刚好落在坝底的B处(点A与大树及其影子在同一平面内),此时太阳光与地面成60°角.在A处测得树顶D的俯角为15°.如图所示,已知AB与地面的夹角为60°,AB为8米.请你帮助小强计算一下这颗大树的高度?(结果精确到1米.参考数据manfen5.com 满分网≈1.4manfen5.com 满分网≈1.7)
manfen5.com 满分网
查看答案
如图所示,在Rt△ABC中,∠C=90°,∠BAC=60°,AB=8.半径为manfen5.com 满分网的⊙M与射线BA相切,切点为N,且AN=3.将Rt△ABC顺时针旋转120°后得到Rt△ADE,点B、C的对应点分别是点D、E.
(1)画出旋转后的Rt△ADE;
(2)求出Rt△ADE的直角边DE被⊙M截得的弦PQ的长度;
(3)判断Rt△ADE的斜边AD所在的直线与⊙M的位置关系,并说明理由.

manfen5.com 满分网 查看答案
有4张不透明的卡片,除正面写有不同的数字-1、2、manfen5.com 满分网、-manfen5.com 满分网外,其他均相同.将这4张卡片背面向上洗匀后放在桌面上.
(1)从中随机抽取一张卡片,上面的数据是无理数的概率是多少?
(2)若从中随机抽取一张卡片,记录数据后放回.重新洗匀后,再从中随机抽取一张,并记录数据.请你用列表法或画树形图法求两次抽取的数据之积是正无理数的概率.

manfen5.com 满分网 查看答案
某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.
(1)求甲、乙两种笔记本的单价各是多少元?
(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.