满分5 >
初中数学试题 >
下列图形中,是轴对称图形但不是中心对称图形的是( ) A. B. C. D.
下列图形中,是轴对称图形但不是中心对称图形的是( )
A.

B.

C.

D.

考点分析:
相关试题推荐
某市在一次扶贫助残活动中,共捐款2 580 000元.将2 580 000元用科学记数法表示为( )
A.2.58×10
7元
B.0.258×10
7元
C.2.58×10
6元
D.25.8×10
6元
查看答案
-3的倒数等于( )
A.-3
B.3
C.

D.
查看答案
如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点P是OA边上的动点(与点O、A不重合).现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PD、PF重合.
(1)设P(x,0),E(0,y),求y关于x的函数关系式,并求y的最大值;
(2)如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;
(3)在(2)的情况下,在该抛物线上是否存在点Q,使△PEQ是以PE为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.
查看答案
教室里放有一台饮水机(如图),饮水机上有两个放水管.课间同学们依次到饮水机前用茶杯接水.假设接水过程中水不发生泼洒,每个同学所接的水量都是相等的.两个放水管同时打开时,他们的流量相同.放水时先打开一个水管,过一会儿,再打开第二个水管,放水过程中阀门一直开着.饮水机的存水量y(升)与放水时间x(分钟)的函数关系如图所示:
(1)求出饮水机的存水量y(升)与放水时间x(分钟)(x≥2)的函数关系式;
(2)如果打开第一个水管后,2分钟时恰好有4个同学接水结束,则前22个同学接水结束共需要几分钟?
(3)按(2)的放法,求出在课间10分钟内班级中最多有多少个同学能及时接完水?
查看答案
如图a,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE.
(1)线段AF和BE有怎样的大小关系?请证明你的结论;
(2)将图a中的△CEF绕点C旋转一定的角度,得到图b,这时(1)中的结论还成立吗?作出判断并说明理由;
(3)若将图a中的△ABC绕点C旋转一定的角度,请你画出一个变换后的图形(草图即

可),(1)中的结论还成立吗?作出判断不必说明理由;
(4)根据以上证明、说理、画图,归纳你的发现.
查看答案