满分5 > 初中数学试题 >

如图,直线y=2x+2与y轴交于A点,与反比例函数(x>0)的图象交于点M,过M...

如图,直线y=2x+2与y轴交于A点,与反比例函数manfen5.com 满分网(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.
(1)求k的值;
(2)点N(a,1)是反比例函数manfen5.com 满分网(x>0)图象上的点,在x轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)根据直线解析式求A点坐标,得OA的长度;根据三角函数定义可求OH的长度,得点M的横坐标;根据点M在直线上可求点M的坐标.从而可求K的值; (2)根据反比例函数解析式可求N点坐标;作点N关于x轴的对称点N1,连接MN1与x轴的交点就是满足条件的P点位置. 【解析】 (1)由y=2x+2可知A(0,2),即OA=2.…(1分) ∵tan∠AHO=2,∴OH=1.…(2分) ∵MH⊥x轴,∴点M的横坐标为1. ∵点M在直线y=2x+2上, ∴点M的纵坐标为4.即M(1,4).…(3分) ∵点M在y=上, ∴k=1×4=4.…(4分) (2)存在. 过点N作N关于x轴的对称点N1,连接MN1,交x轴于P(如图所示).此时PM+PN最小. ∵点N(a,1)在反比例函数(x>0)上, ∴a=4.即点N的坐标为(4,1).…(5分) ∵N与N1关于x轴的对称,N点坐标为(4,1), ∴N1的坐标为(4,-1).…(7分) 设直线MN1的解析式为y=kx+b. 由解得k=-,b=.…(9分) ∴直线MN1的解析式为. 令y=0,得x=. ∴P点坐标为(,0).…(10分)
复制答案
考点分析:
相关试题推荐
已知关于x的一元二次方程(x-m)2+6x=4m-3有实数根.
(1)求m的取值范围;
(2)设方程的两实根分别为x1与x2,求代数式x1•x2-x12-x22的最大值.
查看答案
如图,在东西方向的海岸线l上有一长为1千米的码头MN,在码头西端M的正西方向30 千米处有一观察站O.某时刻测得一艘匀速直线航行的轮船位于O的北偏西30°方向,且与O相距manfen5.com 满分网千米的A处;经过40分钟,又测得该轮船位于O的正北方向,且与O相距20千米的B处.
(1)求该轮船航行的速度;
(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.(参考数据:manfen5.com 满分网manfen5.com 满分网

manfen5.com 满分网 查看答案
菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.
(1)求平均每次下调的百分率;
(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:
方案一:打九折销售;
方案二:不打折,每吨优惠现金200元.
试问小华选择哪种方案更优惠,请说明理由.
查看答案
在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.
manfen5.com 满分网
请你根据统计图提供的信息,解答下列问题:
(1)本次调查中,一共调查了______名同学;
(2)条形统计图中,m=______,n=______
(3)扇形统计图中,艺术类读物所在扇形的圆心角是______度;
(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?
查看答案
如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).
(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)
(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.