满分5 > 初中数学试题 >

如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,-n),抛物...

如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,-n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2-2x-3=0的两根.
(1)求抛物线的解析式;
(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.
①当△OPC为等腰三角形时,求点P的坐标;
②求△BOD 面积的最大值,并写出此时点D的坐标.

manfen5.com 满分网
(1)首先解方程得出A,B两点的坐标,进而利用待定系数法求出二次函数解析式即可; (2)①首先求出AB的直线解析式,以及BO解析式,再利用等腰三角形的性质得出当OC=OP时,当OP=PC时,点P在线段OC的中垂线上,当OC=PC时分别求出x的值即可; ②利用S△BOD=S△ODQ+S△BDQ得出关于x的二次函数,进而得出最值即可. 解(1)解方程x2-2x-3=0, 得 x1=3,x2=-1. ∵m<n, ∴m=-1,n=3…(1分) ∴A(-1,-1),B(3,-3). ∵抛物线过原点,设抛物线的解析式为y=ax2+bx(a≠0). ∴ 解得:, ∴抛物线的解析式为.…(4分) (2)①设直线AB的解析式为y=kx+b. ∴ 解得:, ∴直线AB的解析式为. ∴C点坐标为(0,).…(6分) ∵直线OB过点O(0,0),B(3,-3), ∴直线OB的解析式为y=-x. ∵△OPC为等腰三角形, ∴OC=OP或OP=PC或OC=PC. 设P(x,-x), (i)当OC=OP时,. 解得,(舍去). ∴P1(,). (ii)当OP=PC时,点P在线段OC的中垂线上, ∴P2(,-). (iii)当OC=PC时,由, 解得,x2=0(舍去). ∴P3(,-). ∴P点坐标为P1(,)或P2(,-)或P3(,-).…(9分) ②过点D作DG⊥x轴,垂足为G,交OB于Q,过B作BH⊥x轴,垂足为H. 设Q(x,-x),D(x,). S△BOD=S△ODQ+S△BDQ=DQ•OG+DQ•GH, =DQ(OG+GH), =, =, ∵0<x<3, ∴当时,S取得最大值为,此时D(,-).…(13分)
复制答案
考点分析:
相关试题推荐
如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.
(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.
(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.
①求证:BD⊥CF;
②当AB=4,AD=manfen5.com 满分网时,求线段BG的长.
manfen5.com 满分网
查看答案
如图,直线y=2x+2与y轴交于A点,与反比例函数manfen5.com 满分网(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.
(1)求k的值;
(2)点N(a,1)是反比例函数manfen5.com 满分网(x>0)图象上的点,在x轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知关于x的一元二次方程(x-m)2+6x=4m-3有实数根.
(1)求m的取值范围;
(2)设方程的两实根分别为x1与x2,求代数式x1•x2-x12-x22的最大值.
查看答案
如图,在东西方向的海岸线l上有一长为1千米的码头MN,在码头西端M的正西方向30 千米处有一观察站O.某时刻测得一艘匀速直线航行的轮船位于O的北偏西30°方向,且与O相距manfen5.com 满分网千米的A处;经过40分钟,又测得该轮船位于O的正北方向,且与O相距20千米的B处.
(1)求该轮船航行的速度;
(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.(参考数据:manfen5.com 满分网manfen5.com 满分网

manfen5.com 满分网 查看答案
菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.
(1)求平均每次下调的百分率;
(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:
方案一:打九折销售;
方案二:不打折,每吨优惠现金200元.
试问小华选择哪种方案更优惠,请说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.