满分5 > 初中数学试题 >

如图,△ABC内接于⊙O,直径BD交AC于E,过O作FG⊥AB,交AC于F,交A...

如图,△ABC内接于⊙O,直径BD交AC于E,过O作FG⊥AB,交AC于F,交AB于H,交⊙O于G.
(1)求证:OF•DE=OE•2OH;
(2)若⊙O的半径为12,且OE:OF:OD=2:3:6,求阴影部分的面积.(结果保留根号)

manfen5.com 满分网
(1)由BD是直径,根据圆周角定理,可得∠DAB=90°,又由FG⊥AB,可得FG∥AD,即可判定△FOE∽△ADE,根据相似三角形的对应边成比例,即可得,然后由O是BD的中点,DA∥OH,可得AD=2OH,则可证得OF•DE=OE•2OH; (2)由⊙O的半径为12,且OE:OF:OD=2:3:6,即可求得OE,DE,OF的长,由,求得AD的长,又由在Rt△ABC中,OB=2OH,可求得∠BOH=60°,继而可求得BH的长,又由S阴影=S扇形GOB-S△OHB,即可求得答案. (1)证明:∵BD是直径, ∴∠DAB=90°.…(1分) ∵FG⊥AB, ∴DA∥FO. ∴△FOE∽△ADE. ∴. 即OF•DE=OE•AD.…(3分) ∵O是BD的中点,DA∥OH, ∴AD=2OH.…(4分) ∴OF•DE=OE•2OH.…(5分) (2)【解析】 ∵⊙O的半径为12,且OE:OF:OD=2:3:6, ∴OE=4,ED=8,OF=6.…(6分) 代入(1)中OF•DE=OE•AD,得AD=12. ∴OH=AD=6. 在Rt△OHB中,OB=2OH, ∴∠OBH=30°, ∴∠BOH=60°. ∴BH=BO•sin60°=12×=6.…(8分) ∴S阴影=S扇形GOB-S△OHB=-×6×6=24π-18.(10分)
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,-n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2-2x-3=0的两根.
(1)求抛物线的解析式;
(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.
①当△OPC为等腰三角形时,求点P的坐标;
②求△BOD 面积的最大值,并写出此时点D的坐标.

manfen5.com 满分网 查看答案
如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.
(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.
(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.
①求证:BD⊥CF;
②当AB=4,AD=manfen5.com 满分网时,求线段BG的长.
manfen5.com 满分网
查看答案
如图,直线y=2x+2与y轴交于A点,与反比例函数manfen5.com 满分网(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.
(1)求k的值;
(2)点N(a,1)是反比例函数manfen5.com 满分网(x>0)图象上的点,在x轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知关于x的一元二次方程(x-m)2+6x=4m-3有实数根.
(1)求m的取值范围;
(2)设方程的两实根分别为x1与x2,求代数式x1•x2-x12-x22的最大值.
查看答案
如图,在东西方向的海岸线l上有一长为1千米的码头MN,在码头西端M的正西方向30 千米处有一观察站O.某时刻测得一艘匀速直线航行的轮船位于O的北偏西30°方向,且与O相距manfen5.com 满分网千米的A处;经过40分钟,又测得该轮船位于O的正北方向,且与O相距20千米的B处.
(1)求该轮船航行的速度;
(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.(参考数据:manfen5.com 满分网manfen5.com 满分网

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.