满分5 > 初中数学试题 >

如图,⊙P与y轴相切于坐标原点O(0,0),与x轴相交于点A(5,0),过点A的...

如图,⊙P与y轴相切于坐标原点O(0,0),与x轴相交于点A(5,0),过点A的直线AB与y轴的正半轴交于点B,与⊙P交于点C.
(1)已知AC=3,求点B的坐标;
(2)若AC=a,D是OB的中点.问:点O、P、C、D四点是否在同一圆上?请说明理由.如果这四点在同一圆上,记这个圆的圆心为O1,函数manfen5.com 满分网的图象经过点O1,求k的值(用含a的代数式表示).

manfen5.com 满分网
(1)此题有两种解法: 解法一:连接OC,根据OA是⊙P的直径,可得OC⊥AB,利用勾股定理求得OC,再求证Rt△AOC∽Rt△ABO,利用其对应变成比例求得OB即可; 解法二:连接OC,根据OA是⊙P的直径,可得∠ACO=90°,利用勾股定理求得OC,过C作CE⊥OA于点E,分别求得CE、0E,设经过A、C两点的直线解析式为:y=kx+b. 把点A(5,0)、代入上式解得即可. (2)连接CP、CD、DP,根据OC⊥AB,D为OB上的中点,可得,求证Rt△PDO和Rt△PDC是同以PD为斜边的直角三角形,可得PD上的中点到点O、P、C、D四点的距离相等,由上可知,经过点O、P、C、D的圆心O1是DP的中点,圆心,由(1)知:Rt△AOC∽Rt△ABO,可得,求得:AB、OD即可. 【解析】 (1)解法一:连接OC, ∵OA是⊙P的直径, ∴OC⊥AB, 在Rt△AOC中,, 在Rt△AOC和Rt△ABO中, ∵∠CAO=∠OAB ∴Rt△AOC∽Rt△ABO, ∴,即, ∴, ∴ 解法二:连接OC,因为OA是⊙P的直径, ∴∠ACO=90° 在Rt△AOC中,AO=5,AC=3, ∴OC=4, 过C作CE⊥OA于点E,则:, 即:, ∴,(2分) ∴, ∴, 设经过A、C两点的直线解析式为:y=kx+b. 把点A(5,0)、代入上式得:, 解得:, ∴, ∴点. (2)点O、P、C、D四点在同一个圆上,理由如下: 连接CP、CD、DP, ∵OC⊥AB,D为OB上的中点, ∴, ∴∠3=∠4, 又∵OP=CP, ∴∠1=∠2, ∴∠1+∠3=∠2+∠4=90°, ∴PC⊥CD,又∵DO⊥OP, ∴Rt△PDO和Rt△PDC是同以PD为斜边的直角三角形, ∴PD上的中点到点O、P、C、D四点的距离相等, ∴点O、P、C、D在以DP为直径的同一个圆上; 由上可知,经过点O、P、C、D的圆心O1是DP的中点,圆心, 由(1)知:Rt△AOC∽Rt△ABO, ∴, 求得:AB=,在Rt△ABO中,, OD=, ∴,点O1在函数的图象上, ∴, ∴.
复制答案
考点分析:
相关试题推荐
有3张扑克牌,分别是红桃3、黑桃4和黑桃5.把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张.
(1)先后两次抽得的数字分别记为s和t,则|s-t|≤1的概率.
(2)甲、乙两人做游戏,现有两种方案.A方案:若两次抽得相同花色则甲胜,否则乙胜.B方案:若两次抽得数字和为奇数则甲胜,否则乙胜.
请问甲选择哪种方案胜率更高?
查看答案
今年,号称“千湖之省”的湖北正遭受大旱,为提高学生环境意识,节约用水,某校数学教师编制了一道应用题:为了保护水资源,某市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:
月用水量(吨)单价(元/吨)
不大于10吨部分1.5
大于10吨不大于m吨部分(20≤m≤50)2
大于m吨部分3
(1)若某用户六月份用水量为18吨,求其应缴纳的水费;
(2)记该用户六月份用水量为x吨,缴纳水费为y元,试列出y与x的函数式;
(3)若该用户六月份用水量为40吨,缴纳水费y元的取值范围为70≤y≤90,试求m的取值范围.
查看答案
五一期间,小红到美丽的世界地质公园湖光岩参加社会实践活动,在景点P处测得景点B位于南偏东45°方向;然后沿北偏东60°方向走100米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与B之间的距离.(结果精确到0.1米)

manfen5.com 满分网 查看答案
解方程:|x2-y2-4|+manfen5.com 满分网=0.
查看答案
先化简,再求值:manfen5.com 满分网,其中a=-3.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.