如图,在平面直角坐标系中,抛物线y=ax
2+bx+c交y轴于A(0,3),交x轴于B、C两点(点B在点C的左侧).B、C两点坐标分别为(2,0),(6,0).
(1)求此抛物线的解析式;
(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;
(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标.
考点分析:
相关试题推荐
问题背景:某课外学习小组在一次学习研讨中,得到了如下两个命题:
①如图1,在正三角形ABC中,M,N分别是AC,AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;
②如图2,在正方形ABCD中,M,N分别是CD,AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.
然后运用类比的思想提出了如下命题;
③如图3,在正五边形ABCDE中,M,N分别是CD,DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求:
(1)请你从①,②,③三个命题中选择一个进行证明;
(2)请你继续完成下面的探索:
①如图4,在正n(n≥3)边形ABCDEF…中,M,N分别是CD,DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立;(不要求证明)
②如图5,在正五边形ABCDE中,M,N分别是DE,AE上的点,BM与CN相交于点O,若∠BON=108°时,试问结论BM=CN是否还成立.若成立,请给予证明;若不成立,请说明理由.
查看答案
张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).
(1)求y与x之间的函数关系式;
(2)已知老王种植水果的成本是2 800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润w最大?最大利润是多少?
查看答案
如图,AB是⊙O的直径,AD是⊙O的切线,点C在⊙O上,BC∥OD.
(1)若AB=2,OD=3,求BC的长;
(2)若作直线CD,试说明直线CD是⊙O的切线.
查看答案
已知关于x的方程x
2-2mx+n
2=0
(1)若m从0,1,2,3四个数任意取一个数,n从0,1,2三个数任意取一个数,则方程有实数根的概率是多少?
(2)当m=2,n=1时,解此方程.
查看答案
如图,小明同学站在休闲广场A处放风筝,当绳子与地面的夹角为60°时,小明与风筝的水平距离为40米,若小明原地不动,每秒0.5米收绳,且绳子与地面的夹角不变.问:1分钟后,风筝垂直下降多少米?(结果精确到O.1米).参考数据
≈1.732,
≈1.414.
查看答案