满分5 > 初中数学试题 >

如图,在平面直角坐标系中,抛物线y=ax2+bx+c交y轴于A(0,3),交x轴...

如图,在平面直角坐标系中,抛物线y=ax2+bx+c交y轴于A(0,3),交x轴于B、C两点(点B在点C的左侧).B、C两点坐标分别为(2,0),(6,0).
(1)求此抛物线的解析式;
(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;
(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标.

manfen5.com 满分网
(1)已知抛物线交y轴于A(0,3),交x轴于B、C两点坐标分别为(2,0),(6,0),把以上三点的坐标分别代入抛物线y=ax2+bx+c,求出a,b,c的值即可求出此二次函数的解析式; (2)根据抛物线的解析式,易求得对称轴l的解析式及B、C的坐标,分别求出直线AB、BD、CE的解析式,再求出CE的长,与到抛物线的对称轴的距离相比较即可; (3)过P作y轴的垂线,交AC于Q;易求得直线AC的解析式,可设出P点的坐标,进而可表示出P、Q的纵坐标,也就得出了PQ的长;然后根据三角形面积的计算方法,可得出关于△PAC的面积与P点横坐标的函数关系式,根据所得函数的性质即可求出△PAC的最大面积及对应的P点坐标. 【解析】 (1)∵抛物线y=ax2+bx+c交y轴于A(0,3),交x轴于B、C两点坐标分别为(2,0),(6,0), ∴, 解得:, ∴抛物线的解析式为:y=x2-2x+3; (2)相交. 证明:连接CE,则CE⊥BD, ∵抛物线交x轴于B、C两点坐标分别为(2,0),(6,0). ∴对称轴x==4, ∴OB=2,AB==,BC=4, ∵AB⊥BD, ∴∠OAB+∠OBA=90°,∠OBA+∠EBC=90°, ∴△AOB∽△BEC, ∴, 即, 解得CE=, ∵>2, ∴抛物线的对称轴l与⊙C相交; (3)如图,过点P作平行于y轴的直线交AC于点Q; 可求出AC的解析式为y=-x+3; 设P点的坐标为(m,m2-2m+3), 则Q点的坐标为(m,-m+3); ∴PQ=-m+3-(m2-2m+3)=-m2+m, ∵S△PAC=S△PAQ+S△PCQ=×(-m2+m)×6, =-(m-3)2+, ∴当m=3时,△PAC的面积最大为, 此时,P点的坐标为(3,-).
复制答案
考点分析:
相关试题推荐
问题背景:某课外学习小组在一次学习研讨中,得到了如下两个命题:
manfen5.com 满分网manfen5.com 满分网
①如图1,在正三角形ABC中,M,N分别是AC,AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;
②如图2,在正方形ABCD中,M,N分别是CD,AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.
然后运用类比的思想提出了如下命题;
③如图3,在正五边形ABCDE中,M,N分别是CD,DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求:
(1)请你从①,②,③三个命题中选择一个进行证明;
(2)请你继续完成下面的探索:
①如图4,在正n(n≥3)边形ABCDEF…中,M,N分别是CD,DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立;(不要求证明)
②如图5,在正五边形ABCDE中,M,N分别是DE,AE上的点,BM与CN相交于点O,若∠BON=108°时,试问结论BM=CN是否还成立.若成立,请给予证明;若不成立,请说明理由.
查看答案
张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).
(1)求y与x之间的函数关系式;
(2)已知老王种植水果的成本是2 800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润w最大?最大利润是多少?

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,AD是⊙O的切线,点C在⊙O上,BC∥OD.
(1)若AB=2,OD=3,求BC的长;
(2)若作直线CD,试说明直线CD是⊙O的切线.

manfen5.com 满分网 查看答案
已知关于x的方程x2-2mx+n2=0
(1)若m从0,1,2,3四个数任意取一个数,n从0,1,2三个数任意取一个数,则方程有实数根的概率是多少?
(2)当m=2,n=1时,解此方程.
查看答案
如图,小明同学站在休闲广场A处放风筝,当绳子与地面的夹角为60°时,小明与风筝的水平距离为40米,若小明原地不动,每秒0.5米收绳,且绳子与地面的夹角不变.问:1分钟后,风筝垂直下降多少米?(结果精确到O.1米).参考数据manfen5.com 满分网≈1.732,manfen5.com 满分网≈1.414.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.