满分5 > 初中数学试题 >

在Rt△POQ中,OP=OQ=4,M是PQ的中点,把一三角尺的直角顶点放在点M处...

在Rt△POQ中,OP=OQ=4,M是PQ的中点,把一三角尺的直角顶点放在点M处,以M为旋转中心,旋转三角尺,三角尺的两直角边与△POQ的两直角边分别交于点A、B.
(1)求证:MA=MB;
(2)连接AB,探究:在旋转三角尺的过程中,△AOB的周长是否存在最小值?若存在,求出最小值;若不存在,请说明理由.

manfen5.com 满分网
(1)过点M作ME⊥OP于点E,作MF⊥OQ于点F,可得四边形OEBF是矩形,根据三角形的中位线定理可得ME=MF,再根据同角的余角相等可得∠AME=∠BMF,再利用“角边角”证明△AME和△BMF全等,根据全等三角形对应边相等即可证明; (2)根据全等三角形对应边相等可得AE=BF,设OA=x,表示出AE为2-x,即BF的长度,然后表示出OB=2+(2-x),再利用勾股定理列式求出AM,然后根据等腰直角三角形的斜边等于直角边的倍表示出AB的长度,然后根据三角形的周长公式列式判断出△AOB的周长随AB的变化而变化,再根据二次函数的最值问题求出周长最小时的x的值,然后解答即可. (1)证明:如图,过点M作ME⊥OP于点E,作MF⊥OQ于点F, ∵∠O=90°, ∴四边形OEMF是矩形, ∵M是PQ的中点,OP=OQ=4,∠O=90°, ∴ME=OQ=2,MF=OP=2, ∴ME=MF, ∴四边形OEMF是正方形, ∵∠AME+∠AMF=90°,∠BMF+∠AMF=90°, ∴∠AME=∠BMF, 在△AME和△BMF中,, ∴△AME≌△BMF(ASA), ∴MA=MB; (2)【解析】 有最小值,最小值为4+2. 理由如下:根据(1)△AME≌△BMF, ∴AE=BF, 设OA=x,则AE=2-x, ∴OB=OF+BF=2+(2-x)=4-x, 在Rt△AME中,AM==, ∵∠AMB=90°,MA=MB, ∴AB=AM=•=, △AOB的周长=OA+OB+AB=x+(4-x)+=4+, 所以,当x=2,即点A为OP的中点时,△AOB的周长有最小值,最小值为4+, 即4+2.
复制答案
考点分析:
相关试题推荐
学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车一辆小车共需租车费1100元.
(1)求大、小车每辆的租车费各是多少元?
(2)若每辆车上至少要有一名教师,且总租车费用不超过2300元,求最省钱的租车方案.
查看答案
矩形ABCD中,AB=2AD,E为AD的中点,EF⊥EC交AB于点F,连接FC.
(1)求证:△AEF∽△DCE;
(2)求tan∠ECF的值.

manfen5.com 满分网 查看答案
关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1,x2
(1)求m的取值范围;
(2)若2(x1+x2)+x1x2+10=0,求m的值.
查看答案
如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上的一点,且CE=CD.
求证:∠B=∠E.

manfen5.com 满分网 查看答案
在一个口袋中有4个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球然后放回,再随机地摸出一个小球,求下列事件的概率:
(1)两次取的小球的标号相同;
(2)两次取的小球的标号的和等于4.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.