满分5 > 初中数学试题 >

如图,⊙C的内接△AOB中,AB=AO=4,tan∠AOB=,抛物线y=ax2+...

如图,⊙C的内接△AOB中,AB=AO=4,tan∠AOB=manfen5.com 满分网,抛物线y=ax2+bx经过点A(4,0)与点(-2,6).
(1)求抛物线的函数解析式;
(2)直线m与⊙C相切于点A,交y轴于点D.动点P在线段OB上,从点O出发向点B运动;同时动点Q在线段DA上,从点D出发向点A运动;点P的速度为每秒一个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD时,求运动时间t的值;
(3)点R在抛物线位于x轴下方部分的图象上,当△ROB面积最大时,求点R的坐标.

manfen5.com 满分网
(1)根据抛物线y=ax2+bx经过点A(4,0)与点(-2,6),利用待定系数法求抛物线解析式; (2)如答图1,由已知条件,可以计算出OD、AE等线段的长度.当PQ⊥AD时,过点O作OF⊥AD于点F,此时四边形OFQP、OFAE均为矩形.则在Rt△ODF中,利用勾股定理求出DF的长度,从而得到时间t的数值; (3)因为OB为定值,欲使△ROB面积最大,只需OB边上的高最大即可.按照这个思路解决本题. 如答图2,当直线l平行于OB,且与抛物线相切时,OB边上的高最大,从而△ROB的面积最大.联立直线l和抛物线的解析式,利用一元二次方程判别式等于0的结论可以求出R点的坐标. 【解析】 (1)∵抛物线y=ax2+bx经过点A(4,0)与点(-2,6), ∴,解得 ∴抛物线的解析式为:y=x2-2x. (2)如答图1,连接AC交OB于点E,由垂径定理得AC⊥OB. ∵AD为切线,∴AC⊥AD, ∴AD∥OB. 过O点作OF⊥AD于F, ∴四边形OFAE是矩形, ∵tan∠AOB=,∴sin∠AOB=, ∴AE=OA•sin∠AOB=4×=2.4, OD=OA•tan∠OAD=OA•tan∠AOB=4×=3. 当PQ⊥AD时,OP=t,DQ=2t. 过O点作OF⊥AD于F,则在Rt△ODF中, OD=3,OF=AE=2.4,DF=DQ-FQ=DQ-OP=2t-t=t, 由勾股定理得:DF===1.8, ∴t=1.8秒; (3)如答图2,设直线l平行于OB,且与抛物线有唯一交点R(相切), 此时△ROB中OB边上的高最大,所以此时△ROB面积最大. ∵tan∠AOB=,∴直线OB的解析式为y=x, 由直线l平行于OB,可设直线l解析式为y=x+b. ∵点R既在直线l上,又在抛物线上, ∴x2-2x=x+b,化简得:2x2-11x-4b=0. ∵直线l与抛物线有唯一交点R(相切), ∴判别式△=0,即112+32b=0,解得b=-, 此时原方程的解为x=,即xR=, 而yR=xR2-2xR= ∴点R的坐标为R(,).
复制答案
考点分析:
相关试题推荐
在Rt△POQ中,OP=OQ=4,M是PQ的中点,把一三角尺的直角顶点放在点M处,以M为旋转中心,旋转三角尺,三角尺的两直角边与△POQ的两直角边分别交于点A、B.
(1)求证:MA=MB;
(2)连接AB,探究:在旋转三角尺的过程中,△AOB的周长是否存在最小值?若存在,求出最小值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车一辆小车共需租车费1100元.
(1)求大、小车每辆的租车费各是多少元?
(2)若每辆车上至少要有一名教师,且总租车费用不超过2300元,求最省钱的租车方案.
查看答案
矩形ABCD中,AB=2AD,E为AD的中点,EF⊥EC交AB于点F,连接FC.
(1)求证:△AEF∽△DCE;
(2)求tan∠ECF的值.

manfen5.com 满分网 查看答案
关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1,x2
(1)求m的取值范围;
(2)若2(x1+x2)+x1x2+10=0,求m的值.
查看答案
如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上的一点,且CE=CD.
求证:∠B=∠E.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.