满分5 > 初中数学试题 >

如图,在四边形ABCD中,AC=BD=6,E、F、G、H分别是AB、BC、CD、...

如图,在四边形ABCD中,AC=BD=6,E、F、G、H分别是AB、BC、CD、DA的中点,则EG2+FH2=   
manfen5.com 满分网
连接EF,FG,GH,EH,由E、F、G、H分别是AB、BC、CD、DA的中点,得到EH,EF,FG,GH分别是△ABD,△ABC,△BCD,△ACD的中位线,根据三角形中位线定理得到EH,FG等于BD的一半,EF,GH等于AC的一半,由AC=BD=6,得到EH=EF=GH=FG=3,根据四边都相等的四边形是菱形,得到EFGH为菱形,然后根据菱形的性质得到EG⊥HF,且EG=2OE,FH=2OH,在Rt△OEH中,根据勾股定理得到OE2+OH2=EH2=9,再根据等式的性质,在等式的两边同时乘以4,根据4=22,把等式进行变形,并把EG=2OE,FH=2OH代入变形后的等式中,即可求出EG2+FH2的值 【解析】 如右图,连接EF,FG,GH,EH, ∵E、H分别是AB、DA的中点, ∴EH是△ABD的中位线, ∴EH=BD=3, 同理可得EF,FG,GH分别是△ABC,△BCD,△ACD的中位线, ∴EF=GH=AC=3,FG=BD=3, ∴EH=EF=GH=FG=3, ∴四边形EFGH为菱形, ∴EG⊥HF,且垂足为O, ∴EG=2OE,FH=2OH, 在Rt△OEH中,根据勾股定理得:OE2+OH2=EH2=9, 等式两边同时乘以4得:4OE2+4OH2=9×4=36, ∴(2OE)2+(2OH)2=36, 即EG2+FH2=36. 故答案为:36.
复制答案
考点分析:
相关试题推荐
对于正数x,规定 manfen5.com 满分网,例如:manfen5.com 满分网manfen5.com 满分网,则manfen5.com 满分网=    查看答案
某商场计划购进冰箱、彩电进行销售.相关信息如下表:
进价(元/台)售价(元/台)
冰箱a2500
彩电a-4002000
(1)若商场用80000元购进冰箱的数量与用64000元购进彩电的数量相等,求表中a的值.
(2)为了满足市场需要求,商场决定用不超过9万元采购冰箱、彩电共50台,且冰箱的数量不少于彩电数量的manfen5.com 满分网
①该商场有哪几种进货方式?
②若该商场将购进的冰箱、彩电全部售出,获得的最大利润为w元,请用所学的函数知识求出w的值.
查看答案
在学习轴对称的时候,老师让同学们思考课本中的探究题.
如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?
你可以在l上找几个点试一试,能发现什么规律?
manfen5.com 满分网
聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:
①作点B关于直线l的对称点B′.
②连接AB′交直线l于点P,则点P为所求.
请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.
(1)在图中作出点P(保留作图痕迹,不写作法).
(2)请直接写出△PDE周长的最小值:______

manfen5.com 满分网 查看答案
吸烟有害健康,为配合“戒烟”运动,某校组织同学们在社区开展了“你支持哪种戒烟方式”的随机问卷调查,并将调查结果绘制成两幅不完整的统计图:
manfen5.com 满分网
根据统计图解答下列问题:
(1)同学们一共调查了多少人?
(2)将条形统计图补充完整.
(3)若该社区有1万人,请你估计大约有多少人支持“警示戒烟”这种方式?
(4)为了让更多的市民增强“戒烟”意识,同学们在社区做了两期“警示戒烟”的宣传.若每期宣传后,市民支持“警示戒烟”的平均增长率为20%,则两期宣传后支持“警示戒烟”的市民约有多少人?
查看答案
某校学生去春游,在风景区看到一棵汉柏树,不知这棵汉柏树有多高,下面是两位同学的一段对话:
小明:我站在此处看树顶仰角为45°.
小华:我站在此处看树顶仰角为30°.
小明:我们的身高都是1.6m.
小华:我们相距20m.
请你根据这两位同学的对话,计算这棵汉柏树的高度.
(参考数据:manfen5.com 满分网manfen5.com 满分网,结果保留三个有效数字)

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.