如图,点D是⊙O直径CA的延长线上一点,点B在⊙O上,且AB=AD=AO.
(1)求证:BD是⊙O的切线;
(2)若点E是劣弧BC上一点,弦AE与BC相交于点F,且CF=9,cos∠BFA=
,求EF的长.
考点分析:
相关试题推荐
阅读材料并解答问题:
与正三角形各边都相切的圆叫做正三角形的内切圆,与正四边形各边都相切的圆叫做正四边形的内切圆,与正n边形各边都相切的圆叫做正n边形的内切圆,设正n(n≥3)边形的面积为S
正n边形,其内切圆的半径为r,试探索正n边形的面积.
(1)如图1,当n=3时,设AB切⊙P于点C,连接OC,OA,OB,
∴OC⊥AB,
∴OA=OB,
∴∠AOC=
∠AOB,∴AB=2BC.
在Rt△AOC中,
∵∠AOC=
•
=60°,OC=r,
∴AC=r•tan60°,∴AB=2r•tan60°,
∴S
△OAB=
•r•2r•tan60°=r
2tan60°,
∴S
正三角形=3S
△OAB=3r
2•tan60度.
(2)如图2,当n=4时,仿照(1)中的方法和过程可求得:S
正四边形=4S
△OAB=______;
(3)如图3,当n=5时,仿照(1)中的方法和过程求S
正五边形;
(4)如图4,根据以上探索过程,请直接写出S
正n边形=______.
查看答案
如图,已知一次函数y=kx+b的图象经过A(-2,-1),B(1,3)两点,并且交x轴于点C,交y轴于点D.
(1)求该一次函数的解析式;
(2)求tan∠OCD的值;
(3)求证:∠AOB=135度.
查看答案
在学校组织的“知荣明耻,文明出行”的知识竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:
请你根据以上提供的信息解答下列问题:
(1)此次竞赛中二班成绩在C级以上(包括C级)的人数为______;
(2)请你将表格补充完整:
| 平均数( 分) | 中位数( 分) | 众数( 分) |
一班 | 87.6 | 90 | |
二班 | 87.6 | | 100 |
(3)请从下列不同角度对这次竞赛成绩的结果进行分析:
①从平均数和中位数的角度来比较一班和二班的成绩;
②从平均数和众数的角度来比较一班和二班的成绩;
③从B级以上(包括B级)的人数的角度来比较一班和二班的成绩.
查看答案
如图,一艘核潜艇在海面下500米A点处测得俯角为30°正前方的海底有黑匣子信号发出,继续在同一深度直线航行4000米后再次在B点处测得俯角为60°正前方的海底有黑匣子信号发出,求海底黑匣子C点处距离海面的深度?(精确到米,参考数据:
≈1.414,
≈1.732,
≈2.236)
查看答案
若x
2+2xy+y
2-a(x+y)+25是完全平方式,求a的值.
查看答案