满分5 > 初中数学试题 >

如图,矩形OABC的两边在坐标轴上,连接AC,抛物线y=x2-4x-2经过A,B...

如图,矩形OABC的两边在坐标轴上,连接AC,抛物线y=x2-4x-2经过A,B两点.
(1)求A点坐标及线段AB的长;
(2)若点P由点A出发以每秒1个单位的速度沿AB边向点B移动,1秒后点Q也由点A出发以每秒7个单位的速度沿AO,OC,CB边向点B移动,当其中一个点到达终点时另一个点也停止移动,点P的移动时间为t秒.
①当PQ⊥AC时,求t的值;
②当PQ∥AC时,对于抛物线对称轴上一点H,∠HOQ>∠POQ,求点H的纵坐标的取值范围.

manfen5.com 满分网
(1)已知抛物线的解析式,将x=0代入即可得A点坐标;由于四边形OABC是矩形,那么A、B纵坐标相同,代入该纵坐标可求出B点坐标,则AB长可求. (2)①Q点的位置可分:在OA上、在OC上、在CB上 三段来分析,若PQ⊥AC时,很显然前两种情况符合要求,首先确定这三段上t的取值范围,然后通过相似三角形(或构建相似三角形),利用比例线段来求出t的值,然后由t的取值范围将不合题意的值舍去; ②当PQ∥AC时,△BPQ∽△BAC,通过比例线段求出t的值以及P、Q点的坐标,可判定P点在抛物线的对称轴上,若P、H1重合,此时有∠H1OQ=∠POQ,显然若做点H1关于OQ的对称点H2,那么亦可得到∠H2OQ=∠POQ,而题干要求的是∠HOQ>∠POQ,那么H1点以下、H2点以上的H点都是符合要求的. 【解析】 (1)由抛物线y=x2-4x-2知:当x=0时,y=-2, ∴A(0,-2). 由于四边形OABC是矩形,所以AB∥x轴,即A、B的纵坐标相同; 当y=-2时,-2=x2-4x-2,解得x1=0,x2=4, ∴B(4,-2), ∴AB=4. (2)①由题意知:A点移动路程为AP=t, Q点移动路程为7(t-1)=7t-7. 当Q点在OA上时,即0≤7t-7<2,1≤t<时, 如图1,若PQ⊥AC,则有Rt△QAP∽Rt△ABC. ∴=,即, ∴t=. ∵>, ∴此时t值不合题意. 当Q点在OC上时,即2≤7t-7<6,≤t<时, 如图2,过Q点作QD⊥AB. ∴AD=OQ=7(t-1)-2=7t-9. ∴DP=t-(7t-9)=9-6t. 若PQ⊥AC,易证Rt△QDP∽Rt△ABC, ∴,即=,∴t=, ∵<<, ∴t=符合题意. 当Q点在BC上时,即6≤7t-7≤8,≤t≤时, 如图3,若PQ⊥AC,过Q点作QG∥AC, 则QG⊥PG,即∠GQP=90°. ∴∠QPB>90°,这与△QPB的内角和为180°矛盾, 此时PQ不与AC垂直. 综上所述,当t=时,有PQ⊥AC. ②当PQ∥AC时,如图4,△BPQ∽△BAC, ∴=, ∴=, 解得t=2,即当t=2时,PQ∥AC. 此时AP=2,BQ=CQ=1, ∴P(2,-2),Q(4,-1). 抛物线对称轴的解析式为x=2, 当H1为对称轴与OP的交点时, 有∠H1OQ=∠POQ, ∴当yH<-2时,∠HOQ>∠POQ. 作P点关于OQ的对称点P′,连接PP′交OQ于点M, 过P′作P′N垂直于对称轴,垂足为N,连接OP′, 在Rt△OCQ中,∵OC=4,CQ=1. ∴OQ=, ∵S△OPQ=S四边形ABCO-S△AOP-S△COQ-S△QBP=3=OQ×PM, ∴PM=, ∴PP′=2PM=, ∵∠NPP′=∠COQ. ∴△COQ∽△NPP′ ∴, ∴P′N=,PN=, ∴P′(,), ∴直线OP′的解析式为y=x, ∴OP′与NP的交点H2(2,). ∴当yH>时,∠HOP>∠POQ. 综上所述,当yH<-2或yH>时,∠HOQ>∠POQ.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚度忽略不计).
(1)如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方形盒子.
①要使折成的长方形盒子的底面积为484cm2,那么剪掉的正方形的边长为多少?
②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.
(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方形盒子,若折成的一个长方形盒子的表面积为550cm2,求此时长方形盒子的长、宽、高(只需求出符合要求的一种情况).
查看答案
小明和同桌小聪在课后复习时,对课本“目标与评定”中的一道思考题,进行了认真的探索.
【思考题】如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B将向外移动多少米?
(1)请你将小明对“思考题”的解答补充完整:
【解析】
设点B将向外移动x米,即BB1=x,
则B1C=x+0.7,A1C=AC-AA1=manfen5.com 满分网-0.4=2
而A1B1=2.5,在Rt△A1B1C中,由manfen5.com 满分网+manfen5.com 满分网=manfen5.com 满分网得方程______
解方程得x1=______,x2=______
∴点B将向外移动______米.
(2)解完“思考题”后,小聪提出了如下两个问题:
【问题一】在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?
【问题二】在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?
请你解答小聪提出的这两个问题.

manfen5.com 满分网 查看答案
联想三角形外心的概念,我们可引入如下概念.
定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.
举例:如图1,若PA=PB,则点P为△ABC的准外心.
应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=manfen5.com 满分网AB,求∠APB的度数.
探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.
manfen5.com 满分网
查看答案
一分钟投篮测试规定,得6分以上为合格,得9分以上为优秀,甲、乙两组同学的一次测试成绩如下:
成绩(分)456789
甲组(人)125214
乙组(人)114522
(1)请你根据上述统计数据,把下面的图和表补充完整;
manfen5.com 满分网
一分钟投篮成绩统计分析表:
统计量平均分方差中位数合格率优秀率
甲组 2.56680.0%26.7%
乙组6.81.76 86.7%13.3%
(2)下面是小明和小聪的一段对话,请你根据(1)中的表,写出两条支持小聪的观点的理由.manfen5.com 满分网
查看答案
如图1,某超市从一楼到二楼的电梯AB的长为16.50米,坡角∠BAC为32°.
(1)求一楼与二楼之间的高度BC(精确到0.01米);
(2)电梯每级的水平级宽均是0.25米,如图2.小明跨上电梯时,该电梯以每秒上升2级的高度运行,10秒后他上升了多少米(精确到0.01米)?备用数据:sin32°=0.5299,cos32°=0.8480,tan32°=0.6249.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.