满分5 > 初中数学试题 >

如图,AB是⊙O的直径,AC是弦,OD⊥AC于点D,过点A作⊙O的切线AP,AP...

如图,AB是⊙O的直径,AC是弦,OD⊥AC于点D,过点A作⊙O的切线AP,AP与OD的延长线交于点P,连接PC、BC.
(1)猜想:线段OD与BC有何数量和位置关系,并证明你的结论.
(2)求证:PC是⊙O的切线.

manfen5.com 满分网
(1)根据垂径定理可以得到D是AC的中点,则OD是△ABC的中位线,根据三角形的中位线定理可以得到OD∥BC,CD=BC; (2)连接OC,设OP与⊙O交于点E,可以证得△OAP≌△OCP,利用全等三角形的对应角相等,以及切线的性质定理可以得到:∠OCP=90°,即OC⊥PC,即可等证. (1)猜想:OD∥BC,OD=BC. 证明:∵OD⊥AC, ∴AD=DC ∵AB是⊙O的直径, ∴OA=OB…2分 ∴OD是△ABC的中位线, ∴OD∥BC,OD=BC (2)证明:连接OC,设OP与⊙O交于点E. ∵OD⊥AC,OD经过圆心O, ∴,即∠AOE=∠COE 在△OAP和△OCP中, , ∴△OAP≌△OCP, ∴∠OCP=∠OAP ∵PA是⊙O的切线, ∴∠OAP=90°. ∴∠OCP=90°,即OC⊥PC ∴PC是⊙O的切线.
复制答案
考点分析:
相关试题推荐
问题情境:
用同样大小的黑色棋子按如图所示的规律摆放,则第2012个图共有多少枚棋子?
manfen5.com 满分网
建立模型:
有些规律问题可以借助函数思想来探讨,具体步骤:第一步,确定变量;第二步:在直角坐标系中画出函数图象;第三步:根据函数图象猜想并求出函数关系式;第四步:把另外的某一点代入验证,若成立,则用这个关系式去求解.
解决问题:
根据以上步骤,请你解答“问题情境”.

manfen5.com 满分网 查看答案
一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?
查看答案
manfen5.com 满分网如图,AD是△ABC的角平分线,过点D作DE∥AB,DF∥AC,分别交AC、AB于点E和F.
(1)在图中画出线段DE和DF;
(2)连接EF,则线段AD和EF互相垂直平分,这是为什么?
查看答案
解不等式组manfen5.com 满分网,并在数轴上表示出它的解集.
查看答案
如图,在等边三角形ABC中,D是BC边上的一点,延长AD至E,使AE=AC,∠BAE的平分线交△ABC的高BF于点O,则tan∠AEO=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.