满分5 > 初中数学试题 >

如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(...

如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(6,8).动点M、N分别从O、B同时出发,以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点N作NP⊥BC,交AC于P,连接MP.已知动点运动了x秒.
(1)P点的坐标为多少;(用含x的代数式表示)
(2)试求△MPA面积的最大值,并求此时x的值;
(3)请你探索:当x为何值时,△MPA是一个等腰三角形?你发现了几种情况?写出你的研究成果.

manfen5.com 满分网
(1)P点的横坐标与N点的横坐标相同,求出CN的长即可得出P点的横坐标,然后通过求直线AC的函数解析式来得出P点的纵坐标,由此可求出P点的坐标; (2)可通过求△MPA的面积和x的函数关系式来得出△MPA的面积最大值及对应的x的值. △MPA中,MA=OA-OM,而MA边上的高就是P点的纵坐标,由此可根据三角形的面积计算公式求出S与x的函数关系式,进而根据函数的性质得出S的最大值和对应的x的值; (3)可分三种情况进行讨论: ①MP=AP时,延长NP交x轴于Q,则有PQ⊥OA,那么此时有AQ=BN=MA,由此可求出x的值. ②当MP=AM时,可根据MP、AM的不同表达式得出一个关于x的方程即可求出x的值. ③当MP=MA时,可在直角三角形PMQ中,根据勾股定理求出x的值. 综上所述可得出符合条件的x的值. 【解析】 (1)由题意可知C(0,8),又A(6,0), 所以直线AC解析式为:y=-x+8, 因为P点的横坐标与N点的横坐标相同为6-x,代入直线AC中得y=, 所以P点坐标为(6-x,x); (2)设△MPA的面积为S,在△MPA中,MA=6-x,MA边上的高为x, 其中,0≤x<6, ∴S=(6-x)×x=(-x2+6x)=-(x-3)2+6, ∴S的最大值为6,此时x=3; (3)延长NP交x轴于Q,则有PQ⊥OA ①若MP=PA, ∵PQ⊥MA, ∴MQ=QA=x, ∴3x=6, ∴x=2; ②若MP=MA,则MQ=6-2x,PQ=x,PM=MA=6-x, 在Rt△PMQ中, ∵PM2=MQ2+PQ2, ∴(6-x)2=(6-2x)2+(x)2, ∴x=; ③若PA=AM, ∵PA=x,AM=6-x, ∴x=6-x, ∴x=, 综上所述,x=2,或x=,或x=.
复制答案
考点分析:
相关试题推荐
四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=4,AB=7,
(1)指出旋转中心和旋转角度;
(2)求DE的长度;
(3)BE与DF的位置关系如何?

manfen5.com 满分网 查看答案
如图,⊙O的直径AB=4,C、D为圆周上两点,且四边形OBCD是菱形,过点D的直线EF∥AC,交BA、BC的延长线于点E、F.
(1)求证:EF是⊙O的切线;
(2)求DE的长.

manfen5.com 满分网 查看答案
甲乙二人周末到惠州红花湖环湖旅行,同时从起点(0公理处)出发,环湖步行18千米后回到起点处,甲比乙每小时多走1千米,结果比乙早到36分钟.问二人每小时各走几千米?
查看答案
学校为了解全校1600名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项.且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整).
manfen5.com 满分网
(1)问:在这次调查中,一共抽取了多少名学生?
(2)补全频数分布直方图;
(3)估计全校所有学生中有多少人乘坐公交车上学?
查看答案
在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树(如图)的高度,设计的方案及测量数据如下:
(1)在大树前的平地上选择一点A,测得由点A看大树顶端C的仰角为35°;
(2)在点A和大树之间选择一点B(A,B,D在同一直线上),测得由点B看大树顶端C的仰角恰好为45°;
(3)量出A,B两点间的距离为4.5米.
请你根据以上数据求出大树CD的高度.(精确到0.1米)(可能用到的参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.