满分5 > 初中数学试题 >

如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标...

如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,
(1)求抛物线所对应的函数解析式;
(2)求△ABD的面积;
(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.

manfen5.com 满分网
(1)在矩形OCEF中,已知OF、EF的长,先表示出C、E的坐标,然后利用待定系数法确定该函数的解析式. (2)根据(1)的函数解析式求出A、B、D三点的坐标,以AB为底、D点纵坐标的绝对值为高,可求出△ABD的面积. (3)首先根据旋转条件求出G点的坐标,然后将点G的坐标代入抛物线的解析式中直接进行判定即可. 【解析】 (1)∵四边形OCEF为矩形,OF=2,EF=3, ∴点C的坐标为(0,3),点E的坐标为(2,3). 把x=0,y=3;x=2,y=3分别代入y=-x2+bx+c中, 得, 解得, ∴抛物线所对应的函数解析式为y=-x2+2x+3; (2)∵y=-x2+2x+3=-(x-1)2+4, ∴抛物线的顶点坐标为D(1,4), ∴△ABD中AB边的高为4, 令y=0,得-x2+2x+3=0, 解得x1=-1,x2=3, 所以AB=3-(-1)=4, ∴△ABD的面积=×4×4=8; (3)△AOC绕点C逆时针旋转90°,CO落在CE所在的直线上,由(2)可知OA=1, ∴点A对应点G的坐标为(3,2), 当x=3时,y=-32+2×3+3=0≠2,所以点G不在该抛物线上.
复制答案
考点分析:
相关试题推荐
已知B港口位于A观测点北偏东53.2°方向,且其到A观测点正北方向的距离BD的长为16km,一艘货轮从B港口以40km/h的速度沿如图所示的BC方向航行,15min后达到C处,现测得C处位于A观测点北偏东79.8°方向,求此时货轮与A观测点之间的距离AC的长(精确到0.1km).(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin79.8°≈0.98,cos79.8°≈0.18,tan26.6°≈0.50,manfen5.com 满分网≈1.41,manfen5.com 满分网≈2.24)

manfen5.com 满分网 查看答案
我市某医药公司要把药品运往外地,现有两种运输方式可供选择,
方式一:使用快递公司的邮车运输,装卸收费400元,另外每公里再加收4元;
方式二:使用铁路运输公司的火车运输,装卸收费820元,另外每公里再加收2元,
(1)请分别写出邮车、火车运输的总费用y1(元)、y2(元)与运输路程x(公里)之间的函数关系式;
(2)你认为选用哪种运输方式较好,为什么?
查看答案
如图,⊙O的圆心在坐标原点,半径为2,直线y=x+b(b>0)与⊙O交于A、B两点,点O关于直线y=x+b的对称点O′,
(1)求证:四边形OAO′B是菱形;
(2)当点O′落在⊙O上时,求b的值.

manfen5.com 满分网 查看答案
现有5根小木棒,长度分别为:2、3、4、5、7(单位:cm),从中任意取出3根,
(1)列出所选的3根小木棒的所有可能情况;
(2)如果用这3根小木棒首尾顺次相接,求它们能搭成三角形的概率.
查看答案
今年我市体育中考的现场选测项目中有一项是“排球30秒对墙垫球”,为了了解某学校九年级学生此项目平时的训练情况,随机抽取了该校部分九年级学生进行测试,根据测试结果,制作了如下尚不完整的频数分布表:
 组别 垫球个数x(个) 频数(人数) 频率
 1 10≤x<20 5 0.10
 2 20≤x<30 a 0.18
 3 30≤x<40 20 b
 4 40≤x<50 16 0.32
  合计  1
(1)表中a=______,b=______
(2)这个样本数据的中位数在第______组;
(3)下表为≤体育与健康≥中考察“排球30秒对墙垫球”的中考评分标准,若该校九年级有500名学生,请你估计该校九年级学生在这一项目中得分在7分以上(包括7分)学生约有多少人?
                                                                            排球30秒对墙垫球的中考评分标准
 分值 10 9 8 7 6 5 4 3 2 1
 排球(个) 40 3633 30 27 23 19 15 11 7

查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.