如图,在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=6,BC=12.动点P从D点出发沿DC以每秒1个单位的速度向终点C运动,动点Q从C点出发沿CB以每秒2个单位的速度向B点运动.两点同时出发,当P点到达C点时,Q点随之停止运动.
(1)梯形ABCD的面积等于______;
(2)当PQ∥AB时,P点离开D点的时间等于______秒;
(3)当P,Q,C三点构成直角三角形时,P点离开D点多少时间?
考点分析:
相关试题推荐
如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?
查看答案
如图,AB为⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,已知∠D=30°.
(1)求∠A的度数;
(2)若点F在⊙O上,CF⊥AB,垂足为E,CF=
,求图中阴影部分的面积.
查看答案
2010年我市为了开展阳光体育运动,坚持让中小学生“每天锻炼一小时”,市体育局做了一个随机调查,调查内容是:每天锻炼是否超过1小时及锻炼未超过1小时的原因.他们随机调查了720名学生,用所得的数据制成了扇形统计图和频数分布直方图(图1、图2).
根据图示,请回答以下问题:
(1)“没时间”的人数是______ 人,并补全频数分布直方图;
(2)我市中小学生约18万人,按此调查,可以估计2010年全市中小学生每天锻炼超过1小时的约有______万人;
(3)如果计划2012年我市中小学生每天锻炼超过1小时的人数增加到9.36万人,求2010年至2012年锻炼未超过1小时人数的年平均降低的百分率.
查看答案
如图:在△ABC中,D是BC边的中点,F、E分别是AD及其延长线上的点,CF∥BE.求证:△BDE≌△CDF.
查看答案
如图所示,甲、乙两人在玩转盘游戏时,准备了两个可以自由转动的转盘A、B,每个转盘被分成面积相等的几个扇形,并在每一个扇形内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所指区域的数字之和为0时,甲获胜;数字之和为1时,乙获胜.(如果指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止)
(1)用树状图或列表法求乙获胜的概率;
(2)这个游戏规则对甲乙双方公平吗?请判断并说明理由.
查看答案