满分5 > 初中数学试题 >

如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交...

如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G.
(1)求证:AE•FD=AF•EC;
(2)求证:FC=FB;
(3)若FB=FE=2,求⊙O的半径r的长.

manfen5.com 满分网
(1)由BD是⊙O的切线得出∠DBA=90°,推出CH∥BD,证△AEC∽△AFD,得出比例式即可; (2)证△AEC∽△AFD,△AHE∽△ABF,推出BF=DF,根据直角三角形斜边上中线性质得出CF=DF=BF即可; (3)求出EF=FC,求出∠G=∠FAG,推出AF=FG,求出AB=BG,连接OC,BC,求出∠FCB=∠CAB推出CG是⊙O切线,由切割线定理得出(2+FG)2=BG×AG=2BG2, 在Rt△BFG中,由勾股定理得出BG2=FG2-BF2,推出FG2-4FG-12=0,求出FG即可. (1)证明:∵BD是⊙O的切线, ∴∠DBA=90°, ∵CH⊥AB, ∴CH∥BD, ∴△AEC∽△AFD, ∴=, ∴AE•FD=AF•EC. (2)证明:连接OC,BC, ∵CH∥BD, ∴△AEC∽△AFD,△AHE∽△ABF, ∴==, ∵CE=EH(E为CH中点), ∴BF=DF, ∵AB为⊙O的直径, ∴∠ACB=∠DCB=90°, ∵BF=DF, ∴CF=DF=BF(直角三角形斜边上的中线等于斜边的一半), 即CF=BF. (3)【解析】 ∵BF=CF=DF(已证),EF=BF=2, ∴EF=FC, ∴∠FCE=∠FEC, ∵∠AHE=∠CHG=90°, ∴∠FAH+∠AEH=90°,∠G+∠GCH=90°, ∵∠AEH=∠CEF, ∴∠G=∠FAG, ∴AF=FG, ∵FB⊥AG, ∴AB=BG, 连接OC,BC, ∵BF切⊙O于B, ∴∠FBC=∠CAB, ∵OC=OA,CF=BF, ∴∠FCB=∠FBC,∠OCA=∠OAC, ∴∠FCB=∠CAB, ∵∠ACB=90°, ∴∠ACO+∠BCO=90°, ∴∠FCB+∠BCO=90°, 即OC⊥CG, ∴CG是⊙O切线, ∵GBA是⊙O割线,AB=BG(已证), FB=FE=2, ∴由切割线定理得:(2+FG)2=BG×AG=2BG2, 在Rt△BFG中,由勾股定理得:BG2=FG2-BF2, ∴FG2-4FG-12=0, 解得:FG=6,FG=-2(舍去), 由勾股定理得: AB=BG==4, ∴⊙O的半径是2.
复制答案
考点分析:
相关试题推荐
今年南方某地发生特大洪灾,政府为了尽快搭建板房安置灾民,给某厂下达了生产A种板材48000㎡和B种板材24000㎡的任务.
(1)如果该厂安排210人生产这两种材,每人每天能生产A种板材60㎡或B种板材40㎡,请问:应分别安排多少人生产A种板材和B种板材,才能确保同时完成各自的生产任务?
(2)某灾民安置点计划用该厂生产的两种板材搭建甲、乙两种规格的板房共400间,已知建设一间甲型板房和一间乙型板房所需板材及安置人数如下表所示:
板房A种板材(m2B种板材(m2安置人数
甲型1086112
乙型1565110
问这400间板房最多能安置多少灾民?
查看答案
已知一次函数y1=x+m的图象与反比例函数manfen5.com 满分网的图象交于A、B两点.已知当x>1时,y1>y2;当0<x<1时,y1<y2
(1)求一次函数的解析式;
(2)已知双曲线在第一象限上有一点C到y轴的距离为3,求△ABC的面积.

manfen5.com 满分网 查看答案
有A、B两个不透明的布袋,A袋中有两个完全相同的小球,分别标有数字0和-2;B袋中有三个完全相同的小球,分别标有数字-2、0和1.小明从A袋中随机取出一个小球,记录标有的数字为x,再从B袋中随机取出一个小球,记录标有的数字为y,这样确定了点Q的坐标(x,y).
(1)写出点Q所有可能的坐标;
(2)求点Q在x轴上的概率;
(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点Q能作⊙O切线的概率.
查看答案
计算:manfen5.com 满分网
查看答案
在平面直角坐标系xOy中,已知点A(0,2),⊙A的半径是2,⊙P的半径是1,满足与⊙A及x轴都相切的⊙P有    个. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.