满分5 > 初中数学试题 >

如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点...

如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC的长为x(2<x<4).
(1)当x=manfen5.com 满分网时,求弦PA、PB的长度;
(2)当x为何值时,PD•CD的值最大?最大值是多少?

manfen5.com 满分网
(1)由直线l与圆相切于点A,且AB为圆的直径,根据切线的性质得到AB垂直于直线l,又PC垂直于直线l,根据垂直于同一条直线的两直线平行,得到AB与PC平行,根据两直线平行内错角相等得到一对内错角相等,再由一对直角相等,利用两对对应角相等的两三角形相似可得出△PCA与△PAB相似,由相似得比例,将PC及直径AB的长代入求出PA的长,在直角三角形PAB中,由AB及PA的长,利用勾股定理即可求出PB的长; (2)过O作OE垂直于PD,与PD交于点E,由垂径定理得到E为PD的中点,再由三个角为直角的四边形为矩形得到OACE为矩形,根据矩形的对边相等,可得出EC=OA=2,用PC-EC的长表示出PE,根据PD=2PE表示出PD,再由PC-PD表示出CD,代入所求的式子中,整理后得到关于x的二次函数,配方后根据自变量x的范围,利用二次函数的性质即可求出所求式子的最大值及此时x的取值. 【解析】 (1)∵⊙O与直线l相切于点A,且AB为⊙O的直径, ∴AB⊥l,又∵PC⊥l, ∴AB∥PC, ∴∠CPA=∠PAB, ∵AB是⊙O的直径, ∴∠APB=90°,又PC⊥l, ∴∠PCA=∠APB=90°, ∴△PCA∽△APB, ∴=,即PA2=PC•AB, ∵PC=,AB=4, ∴PA==, ∴Rt△APB中,AB=4,PA=, 由勾股定理得:PB==; (2)过O作OE⊥PD,垂足为E, ∵PD是⊙O的弦,OE⊥PD, ∴PE=ED, 又∠CEO=∠ECA=∠OAC=90°, ∴四边形OACE为矩形, ∴CE=OA=2,又PC=x, ∴PE=ED=PC-CE=x-2, ∴PD=2(x-2), ∴CD=PC-PD=x-2(x-2)=x-2x+4=4-x, ∴PD•CD=2(x-2)•(4-x)=-2x2+12x-16=-2(x-3)2+2, ∵2<x<4, ∴当x=3时,PD•CD的值最大,最大值是2.
复制答案
考点分析:
相关试题推荐
如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(请将下面2小题的结果都精确到0.1米,参考数据:manfen5.com 满分网≈1.732).
(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为______米;
(2)一座建筑物GH距离坡角A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?
manfen5.com 满分网
查看答案
在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.
(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是______
(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率是______(用树状图或列表法求解).

manfen5.com 满分网 查看答案
我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的manfen5.com 满分网,中、美两国人均淡水资源占有量之和为13800m3,问中、美两国人均淡水资源占有量各为多少(单位:m3)?
查看答案
如图,在梯形ABCD中,已知AD∥BC,AB=CD,延长线段CB到E,使BE=AD,连接AE、AC.
(1)求证:△ABE≌△CDA;
(2)若∠DAC=40°,求∠EAC的度数.

manfen5.com 满分网 查看答案
解分式方程:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.