满分5 > 初中数学试题 >

如图,已知△ABC,以BC为直径,O为圆心的半圆交AC于点F,点E为的中点,连接...

如图,已知△ABC,以BC为直径,O为圆心的半圆交AC于点F,点E为manfen5.com 满分网的中点,连接BE交AC于点M,AD为△ABC的角平分线,且AD⊥BE,垂足为点H.
(1)求证:AB是半圆O的切线;
(2)若AB=3,BC=4,求BE的长.

manfen5.com 满分网
(1)连接EC,AD为△ABC的角平分线,得∠1=∠2,又AD⊥BE,可证∠3=∠4,由对顶角相等得∠4=∠5,即∠3=∠5,由E为的中点,得∠6=∠7,由BC为直径得∠E=90°,即∠5+∠6=90°,由AD∥CE可证∠2=∠6,从而有∠3+∠7=90°,证明结论; (2)在Rt△ABC中,由勾股定理可求AC=5,由∠3=∠4得AM=AB=3,则CM=AC-AM=2,由(1)可证△CME∽△BCE,利用相似比可得EB=2EC,在Rt△BCE中,根据BE2+CE2=BC2,得BE2+()2=42,可求BE. (1)证明:连接EC, ∵AD⊥BE于H,∠1=∠2, ∴∠3=∠4(1分) ∵∠4=∠5, ∴∠4=∠5=∠3,(2分) 又∵E为的中点, ∴∠6=∠7,(3分), ∵BC是直径, ∴∠E=90°, ∴∠5+∠6=90°, 又∵∠AHM=∠E=90°, ∴AD∥CE, ∴∠2=∠6=∠1, ∴∠3+∠7=90°, 又∵BC是直径, ∴AB是半圆O的切线;(4分) (2)【解析】 ∵AB=3,BC=4, 由(1)知,∠ABC=90°, ∴AC=5(5分) 在△ABM中,AD⊥BM于H,AD平分∠BAC, ∴AM=AB=3, ∴CM=2(6分) ∵∠6=∠7,∠E为公共角, ∴△CME∽△BCE,得===,(7分) ∴EB=2EC,在Rt△BCE中,BE2+CE2=BC2, 即BE2+()2=42, 解得BE=.(8分)
复制答案
考点分析:
相关试题推荐
如图,一次函数y=k1x+b的图象经过A(0,-2),B(1,0)两点,与反比例函数manfen5.com 满分网的图象在第一象限内的交点为M,若△OBM的面积为2.
(1)求一次函数和反比例函数的表达式;
(2)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由.

manfen5.com 满分网 查看答案
丁丁想在一个矩形材料中剪出如图阴影所示的梯形,作为要制作的风筝的一个翅膀.请你根据图中的数据帮丁丁计算出BE、CD的长度(精确到个位,manfen5.com 满分网≈1.7).

manfen5.com 满分网 查看答案
如图,甲、乙两个可以自由转动的均匀的转盘,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字,同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为m,乙转盘中指针所指区域内的数字为n(若指针指在边界线上时,重转一次,直到指针都指向一个区域为止).
(1)请你用画树状图或列表格的方法求出|m+n|>1的概率;
(2)直接写出点(m,n)落在函数y=-manfen5.com 满分网图象上的概率.

manfen5.com 满分网 查看答案
(1)计算:manfen5.com 满分网
(2)用配方法解方程:2x2-4x-1=0.
查看答案
如图,有一直径MN=4的半圆形纸片,其圆心为点P,从初始位置Ⅰ开始,在无滑动的情况下沿数轴向右翻滚至位置Ⅴ,其中,位置Ⅰ中的MN平行于数轴,且半⊙P与数轴相切于原点O;位置Ⅱ和位置Ⅳ中的MN垂直于数轴;位置Ⅲ中的MN在数轴上;位置Ⅴ中的点N到数轴的距离为3,且半⊙P与数轴相切于点A.
(1)纸片半⊙P从位置Ⅲ翻滚到位置Ⅳ时,点N所经过路径长为   
(2)线段OA的长为    .(结果保留π)
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.