已知:如图,在△ABC中,AB=AC,∠B=75°,则∠A=______度.
考点分析:
相关试题推荐
定义一种变换:平移抛物线F
1得到抛物线F
2,使F
2经过F
1的顶点A.设F
2的对称轴分别交F
1,F
2于点D,B,点C是点A关于直线BD的对称点.
(1)如图1,若F
1:y=x
2,经过变换后,得到F
2:y=x
2+bx,点C的坐标为(2,0),则:
①b的值等于______;
②四边形ABCD为( )
A、平行四边形;B、矩形;C、菱形;D、正方形.
(2)如图2,若F
1:y=ax
2+c,经过变换后,点B的坐标为(2,c-1),求△ABD的面积;
(3)如图3,若F
1:y=
x
2-
x+
,经过变换后,AC=2
,点P是直线AC上的动点,求点P到点D的距离和到直线AD的距离之和的最小值.
查看答案
已知一次函数的图象过点A(O,3),B(4,O).
(1)求直线AB的解析式;
(2)作OP⊥直线AB,垂足为点P.
①求垂线段OP的长;
②以点O为圆心,OP为半径作半圆O,请你探究:在x轴的正半轴半圆弧上是否存在一点Q,使得以Q为圆心,r为半径的⊙Q,既与半圆O相切,又与直线OP相交?若存在,试求r的取值范围;若不存在,请说明理由.(可利用备用图解题)
查看答案
已知Rt△AOB的两条直角边OA=3,OB=1,分别以OA、OB所在直线为x轴、y轴建立平面直角坐标系,如图所示.
先将Rt△AOB绕原点O按顺时针方向旋转90°后,再沿x轴负方向平移1个单位长度得到△CDO.
(1)直接写出点A、C的坐标;
(2)求线段AB扫过的图形的面积.
查看答案
如图,要在一面靠墙(墙长11米)的空地上,用长为16米的篱笆围成一个矩形花圃(不靠墙一边不超过墙长),设与墙平行的一边BC的长为x米,面积为y平方米.
(1)直接写出:与墙垂直的一边AB的长;(用含x的代数式表示)
(2)若与墙平行的一边BC的长度不小于与墙垂直的一边AB的长度,问BC边应为多少米时,才能使矩形花圃ABCD所占地面面积最小,并求出此时最小的面积.
查看答案