满分5 > 初中数学试题 >

点M(2,-1)向上平移2个单位长度得到的点的坐标是( ) A.(2,0) B....

点M(2,-1)向上平移2个单位长度得到的点的坐标是( )
A.(2,0)
B.(2,1)
C.(2,2)
D.(2,-3)
根据向上平移,横坐标不变,纵坐标相加进行解答. 【解析】 ∵点M(2,-1)向上平移2个单位长度, ∴-1+2=1, ∴平移后的点坐标是(2,1). 故选B.
复制答案
考点分析:
相关试题推荐
计算-3+2的结果是( )
A.1
B.-1
C.5
D.-5
查看答案
如图所示,已知抛物线的顶点为坐标原点O,矩形ABCD的顶点A,D在抛物线上,且AD平行x轴,交y轴于点F,AB的中点E在x轴上,B点的坐标为(2,1),点P(a,b)在抛物线上运动.(点P异于点O)
(1)求此抛物线的解析式.
(2)过点P作CB所在直线的垂线,垂足为点R,
①求证:PF=PR;
②是否存在点P,使得△PFR为等边三角形?若存在,求出点P的坐标;若不存在,请说明理由;
③延长PF交抛物线于另一点Q,过Q作BC所在直线的垂线,垂足为S,试判断△RSF的形状.

manfen5.com 满分网 查看答案
如图,A、B两点的坐标分别是(8,0)、(0,6),点P由点B出发沿BA方向向点A作匀速直线运动,速度为每秒3个单位长度,点Q由A出发沿AO(O为坐标原点)方向向点O作匀速直线运动,速度为每秒2个单位长度,连接PQ,若设运动时间为t(0<t<manfen5.com 满分网)秒.解答如下问题:
(1)当t为何值时,PQ∥BO?
(2)设△AQP的面积为S,
①求S与t之间的函数关系式,并求出S的最大值;
②若我们规定:点P、Q的坐标分别为(x1,y1),(x2,y2),则新坐标(x2-x1,y2-y1)称为“向量PQ”的坐标.当S取最大值时,求“向量PQ”的坐标.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,AB是⊙O的直径,动弦CD垂直AB于点E,过点B作直线BF∥CD交AD的延长线于点F,若AB=10cm.
(1)求证:BF是⊙O的切线.
(2)若AD=8cm,求BE的长.
(3)若四边形CBFD为平行四边形,则四边形ACBD为何种四边形?并说明理由.
查看答案
在一个不透明的口袋里装有分别标有数字1,2,3,4四个小球,除数字不同外,小球没有任何区别,每次实验先搅拌均匀.
(1)若从中任取一球,球上的数字为偶数的概率为多少?
(2)若从中任取一球(不放回),再从中任取一球,请用画树状图或列表格的方法求出两个球上的数字之和为偶数的概率.
(3)若设计一种游戏方案:从中任取两球,两个球上的数字之差的绝对值为1为甲胜,否则为乙胜,请问这种游戏方案设计对甲、乙双方公平吗?说明理由.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.