满分5 > 初中数学试题 >

如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向D运动,以B...

如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向D运动,以BE为边,在BE的上方作正方形BEFG,连接CG.请探究:
(1)线段AE与CG是否相等请说明理由:
(2)若设AE=x,DH=y,当x取何值时,y最大?
(3)连接BH,当点E运动到AD的何位置时,△BEH∽△BAE?

manfen5.com 满分网
(1)AE=CG,要证结论,必证△ABE≌△CBG,由正方形的性质很快确定∠3=∠4,又AB=BC,BE=BG,符合SAS即证. (2)先证△ABE∽△DEH,所以,即可求出函数解析式y=-x2+x,继而求出最值. (3)要使△BEH∽△BAE,需,又因为△ABE∽△DEH,所以,即,所以当E点是AD的中点时,△BEH∽△BAE. 【解析】 (1)AE=CG. 理由:正方形ABCD和正方形BEFG中, ∠3+∠5=90°, ∠4+∠5=90°, ∴∠3=∠4. 又AB=BC,BE=BG, ∴△ABE≌△CBG. ∴AE=CG. (2)∵正方形ABCD和正方形BEFG, ∴∠A=∠D=∠FEB=90°. ∴∠1+∠2=90°∠2+∠3=90°. ∴∠1=∠3. 又∵∠A=∠D, ∴△ABE∽△DEH. ∴. ∴. ∴y=-x2+x =-(x-)2+ 当x=时,y有最大值为. (3)【解析】 当E点是AD的中点时,△BEH∽△BAE, 理由:∵E是AD中点, ∴AE=. ∴DH=. 又∵△ABE∽△DEH, ∴. 又∵, ∴. 又∠DAB=∠FEB=90°, ∴△BEH∽△BAE.
复制答案
考点分析:
相关试题推荐
在学校组织的科学常识竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为90分,80分,70分,60分,学校将八年级一班和二班的成绩整理并绘制成如下的统计图:
manfen5.com 满分网
请你根据以上提供的信息解答下列问题:
(1)此次竞赛中二班成绩在70分以上(包括70分)的人数为______
(2)请你将表格补充完整:
平均数(分)中位数(分)众数(分)
一班77.680
二班90
(3)请从不同角度对这次竞赛成绩的结果进行分析.(至少两个角度)
查看答案
如图是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管与支架CD所在直线相交于水箱横断面⊙O的圆心O,支架CD与水平面AE垂直,AB=150厘米,∠BAC=30°,另一根辅助支架DE=76厘米,∠CED=60°.
(1)求垂直支架CD的长度;(结果保留根号)
(2)求水箱半径OD的长度.(结果保留三个有效数字,参考数据:manfen5.com 满分网≈1.414,manfen5.com 满分网≈1.73)
manfen5.com 满分网
查看答案
给出下列命题:
命题1:点(1,1)是直线y=x与双曲线y=manfen5.com 满分网的一个交点;
命题2:点(2,4)是直线y=2x与双曲线y=manfen5.com 满分网的一个交点;
命题3:点(3,9)是直线y=3x与双曲线y=manfen5.com 满分网的一个交点;
(1)请观察上面命题,猜想出命题n(n是正整数);
(2)证明你猜想的命题n是正确.
查看答案
甲同学口袋中有三张卡片,分别写着数字1、1、2,乙同学口袋中也有三张卡片,分别写着数字1、2、2,两人各自从自己的口袋中随机摸出一张卡片,若两人摸出的卡片上的数字之和为偶数,则甲胜,否则乙胜.求甲胜的概率.
查看答案
如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1).
(1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;
(2)分别写出B、C两点的对应点B′、C′的坐标;
(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.