满分5 > 初中数学试题 >

如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B...

如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连接AD,作BE⊥AD,垂足为E,连接CE,过点E作EF⊥CE,交BD于F.
(1)求证:BF=FD;
(2)∠A在什么范围内变化时,四边形ACFE是梯形,并说明理由;
(3)∠A在什么范围内变化时,线段DE上存在点G,满足条件DG=manfen5.com 满分网DA,并说明理由.

manfen5.com 满分网
(1)根据直角三角形斜边上的中线等于斜边的一半,得到CE=BC.从而得到∠CBE=∠CEB,再根据等角的余角相等证明∠FBE=∠FEB,得到BF=EF.根据等角的余角相等以及等角对等边再进一步证明EF=DF,最后得到BF=DF; (2)根据中位线定理得到AE∥CF.要保证是梯形,必须是另一组对边不平行.首先探索另一组对边平行时∠A的度数,从而得到是梯形时的取值范围; (3)从若要满足的结论出发,结合上述结论进行分析,先探求∠D的取值范围,再进一步得到∠A的取值范围. (1)证明:在Rt△AEB中, ∵AC=BC, ∴CE=AB, ∴CB=CE, ∴∠CEB=∠CBE. ∵∠CEF=∠CBF=90°, ∴∠BEF=∠EBF, ∴EF=BF. ∵∠BEF+∠FED=90°,∠EBD+∠EDB=90°, ∴∠FED=∠EDF. ∴BF=FD; (2)【解析】 由(1)BF=FD,而BC=CA, ∴CF∥AD,即AE∥CF. 若AC∥EF,则AC=EF, ∴BC=BF.∴BA=BD,∠A=45°. ∴0°<∠A<90°且∠A≠45°时,四边形ACFE为梯形; (3)【解析】 作GH⊥BD,垂足为H,则GH∥AB. ∵DG=DA, ∴DH=DB. 又F为BD中点, ∴H为DF的中点. ∴GH为DF的中垂线. ∴∠GDF=∠GFD. ∵点G在ED上, ∴∠EFD≥∠GFD. ∵∠EFD+∠FDE+∠DEF=180°, ∴∠GFD+∠FDE+∠DEF≤180度. ∴3∠EDF≤180度. ∴∠EDF≤60度. 又∠A+∠EDF=90°, ∴30°≤∠A<90°. ∴当30°≤∠A<90°时, DE上存在点G,满足条件DG=DA.
复制答案
考点分析:
相关试题推荐
某工厂用一种自动控制加工一批工件,该机器运行过程分为加油过程和加工过程,加工过程中,当油箱中油量为5升时,机器自动停止加工,进入加油过程,油箱加满后继续加工,如此反复.已知,机器需125分钟才能将这批工件加工完,图是油箱的油量y(升)与机器运行的时间x(分)的函数关系图象,根据图象回答下列问题:
(1)求在第一加工过程中,油箱中油量与机器运行的时间的函数关系式;
(2 )机器运行多少分钟,第一个加工过程停止?
(3)加工这批零件机器耗油多少?

manfen5.com 满分网 查看答案
2007年某市国际车展期间,某公司对参观本次车展盛会的消费者进行了随机问卷调查,共发放1000份调查问卷,并全部收回.①根据调查问卷的结果,将消费者年收入的情况整理后,制成表格如下:
年收入(万元)4.867.2910
被调查的消费者人数(人)2005002007030
②将消费者打算购买小车的情况整理后,作出频数分布直方图的一部分(如图).
manfen5.com 满分网
注:每组包含最小值不包含最大值,且车价取整数.请你根据以上信息,回答下列问题.
(1)根据①中信息可得,被调查消费者的年收入的众数是______万元;
(2)请在图中补全这个频数分布直方图;
(3)打算购买价格10万元以下小车的消费者人数占被调查消费者人数的百分比是______
查看答案
如图,甲船在港口P的北偏西60°方向,距港口80海里的A处,沿AP方向以12海里/时的速度驶向港口P,乙船从港口P出发,沿北偏东45°方向匀速驶离港口,现两船同时出发,2小时后甲船到达B处,乙船在甲船的正东方向的C处,求乙船的航行速度.(精确到0.1海里/时,参考数据manfen5.com 满分网

manfen5.com 满分网 查看答案
如图,△ABC中A(-2,-3),B(-3,-1),C(-1,-2).
(1)画图:
①△ABC关于y轴对称的△A1B1C1
②将△ABC向上平移4个单位长度后的△A2B2C2
③将△ABC绕原点O旋转180°后的△A3B3C3
(2)填空:
①B1的坐标为______,B2的坐标为______,B3的坐标为______
②在△A1B1C1,△A2B2C2,△A3B3C3中,△______与△______成轴对称,对称轴是______

manfen5.com 满分网 查看答案
计算manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.