过B作BF平行于AC,交DE于点F,由两直线平行内错角相等得到两对内错角相等,再由O为BC的中点,得到BO=CO,利用AAS可得出三角形BOF与三角形COE全等,根据全等三角形对应边相等可得出BF=EC,再由BF平行于AE,利用平行线等分线段定理列出比例式,根据已知AB与AD的比值求出BD与AD的比值,即可得到BF与AE的比值,将BF等量代换为EC,可得出EC与AE的比值,根据比例的性质即可求出AE与AC的比值.
【解析】
过B作BF∥AC,交DE于点F,
∵BF∥AC,
∴∠FBO=∠C,∠BFO=∠CEO,
又O为BC的中点,∴BO=CO,
在△OBF和△OCE中,
,
∴△OBF≌△OCE(AAS),
∴BF=CE,
∵=,∴=,
又∵BF∥AE,∴==,
∴=,
则==.
故答案为:.