满分5 > 初中数学试题 >

我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四...

我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.一条直线l与方形环的边线有四个交点M、M′、N′、N、小明在探究线段MM′与N′N的数量关系时,从点M′、N′向对边作垂线段M′E、N′F,利用三角形全等、相似及锐角三角函数等相关知识解决了问题、请你参考小明的思路解答下列问题:
(1)当直线l与方形环的对边相交时(如图1),直线l分别交AD、A′D'、B′C′、BC于M、M′、N′、N,小明发现MM′与N′N相等,请你帮他说明理由;
(2)当直线l与方形环的邻边相交时(如图2),l分别交AD、A′D′、D′C′、DC于M、M′、N′、N,l与DC的夹角为α,你认为MM′与N′N还相等吗?若相等,说明理由;若不相等,求出manfen5.com 满分网的值(用含α的三角函数表示).
manfen5.com 满分网
(1)证线段相等,可证线段所在的三角形全等.结合本题,证△MM′E≌△NN′F即可; (2)由于M′E∥CD,则∠EM′M=∠FNN′=α,易证得△FNN′∽△EM′M,那么MM′:NN′=EM′:FN;而EM′=FN′,则比例式可化为:==tanα,由此可知:当α=45°时,MM′=NN′;当α≠45°时,MM′≠NN′. (1)【解析】 在方形环中, ∵M'E⊥AD,N'F⊥BC,AD∥BC, ∴M'E=N'F,∠M'EM=∠N'FN=90°,∠EMM'=∠N'NF, ∴△MM'E≌△NN'F. ∴MM'=N'N;(5分) (2)解法一:∵∠NFN'=∠MEM'=90°,∠FNN'=∠EM'M=α, ∴△NFN'∽△M'EM.                                          (8分) ∴. ∵M'E=N'F, ∴(或).                           (10分) ①当α=45°时,tanα=1,则MM′=NN′; ②当α≠45°时,MM′≠NN′, 则(或).                                 (12分) 解法二:在方形环中,∠D=90°, 又∵M′E⊥AD,N′F⊥CD, ∴M′E∥DC,N′F=M′E. ∴∠MM′E=∠N′NF=α. 在Rt△NN′F与Rt△MM′E中, , 即(或).                                   (10分) ①当α=45°时,MM′=NN′; ②当α≠45°时,MM′≠NN′,则(或).          (12分)
复制答案
考点分析:
相关试题推荐
某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.
(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?
(成本=进价×销售量)
查看答案
如图,线段AB与⊙O相切于点C,连接OA,OB,OB交⊙O于点D,已知OA=OB=manfen5.com 满分网6,AB=6manfen5.com 满分网
(1)求⊙O的半径;
(2)求图中阴影部分的面积.
查看答案
“五•一”期间,某书城为了吸引读者,设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:读者每购买100元的书,就可获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么读者就可以分别获得45元、30元、25元的购书券,凭购书券可以在书城继续购书,如果读者不愿意转转盘,那么可以直接获得10元的购书券.
(1)写出转动一次转盘获得45元购书券的概率;
(2)转转盘和直接获得购书券,你认为哪种方式对读者更合算?请说明理由.

manfen5.com 满分网 查看答案
某课桌生产厂家研究发现,倾斜12°~24°的桌面有利于学生保持躯体自然姿势.根据这一研究,厂家决定将水平桌面做成可调节角度的桌面.新桌面的设计图如图1,AB可绕点A旋转,在点C处安装一根可旋转的支撑臂CD,AC=30cm.
(1)如图2,当∠BAC=24°时,CD⊥AB,求支撑臂CD的长;
(2)如图3,当∠BAC=12°时,求AD的长.(结果保留根号)
(参考数据:sin24°≈0.40,cos24°≈0.91,tan24°≈0.46,sin12°≈0.20)manfen5.com 满分网
查看答案
manfen5.com 满分网已知:如图,A、F、C、D四点在同一直线上,AF=CD,AB∥DE,且AB=DE.求证:
(1)△ABC≌△DEF;
(2)∠CBF=∠FEC.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.