满分5 > 初中数学试题 >

如图,A(-5,0),B(-3,0),点C在y轴的正半轴上,∠CBO=45°,C...

如图,A(-5,0),B(-3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB.∠CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时时间t秒.
(1)求点C的坐标;
(2)当∠BCP=15°时,求t的值;
(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.manfen5.com 满分网
(1)由∠CBO=45°,∠BOC为直角,得到△BOC为等腰直角三角形,又OB=3,利用等腰直角三角形AOB的性质知OC=OB=3,然后由点C在y轴的正半轴可以确定点C的坐标; (2)需要对点P的位置进行分类讨论:①当点P在点B右侧时,如图2所示,由∠BCO=45°,用∠BCO-∠BCP求出∠PCO为30°,又OC=3,在Rt△POC中,利用锐角三角函数定义及特殊角的三角函数值求出OP的长,由PQ=OQ+OP求出运动的总路程,由速度为1个单位/秒,即可求出此时的时间t;②当点P在点B左侧时,如图3所示,用∠BCO+∠BCP求出∠PCO为60°,又OC=3,在Rt△POC中,利用锐角三角函数定义及特殊角的三角函数值求出OP的长,由PQ=OQ+OP求出运动的总路程,由速度为1个单位/秒,即可求出此时的时间t; (3)当⊙P与四边形ABCD的边(或边所在的直线)相切时,分三种情况考虑: ①当⊙P与BC边相切时,利用切线的性质得到BC垂直于CP,可得出∠BCP=90°,由∠BCO=45°,得到∠OCP=45°,即此时△COP为等腰直角三角形,可得出OP=OC,由OC=3,得到OP=3,用OQ-OP求出P运动的路程,即可得出此时的时间t; ②当⊙P与CD相切于点C时,P与O重合,可得出P运动的路程为OQ的长,求出此时的时间t; ③当⊙P与CD相切时,利用切线的性质得到∠DAO=90°,得到此时A为切点,由PC=PA,且PA=9-t,PO=t-4,在Rt△OCP中,利用勾股定理列出关于t的方程,求出方程的解得到此时的时间t. 综上,得到所有满足题意的时间t的值. 【解析】 (1)∵∠BCO=∠CBO=45°, ∴OC=OB=3, 又∵点C在y轴的正半轴上, ∴点C的坐标为(0,3); (2)分两种情况考虑: ①当点P在点B右侧时,如图2, 若∠BCP=15°,得∠PCO=30°, 故PO=CO•tan30°=,此时t=4+; ②当点P在点B左侧时,如图3, 由∠BCP=15°,得∠PCO=60°, 故OP=COtan60°=3, 此时,t=4+3, ∴t的值为4+或4+3; (3)由题意知,若⊙P与四边形ABCD的边相切时,有以下三种情况: ①当⊙P与BC相切于点C时,有∠BCP=90°, 从而∠OCP=45°,得到OP=3,此时t=1; ②当⊙P与CD相切于点C时,有PC⊥CD,即点P与点O重合,此时t=4; ③当⊙P与AD相切时,由题意,得∠DAO=90°, ∴点A为切点,如图4,PC2=PA2=(9-t)2,PO2=(t-4)2, 于是(9-t)2=(t-4)2+32,即81-18t+t2=t2-8t+16+9, 解得:t=5.6, ∴t的值为1或4或5.6.
复制答案
考点分析:
相关试题推荐
某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长在(单位:cm)在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)有基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的.浮动价与薄板的边长成正比例.在营销过程中得到了表格中的数据.
薄板的边长(cm)2030
出厂价(元/张)5070
(1)求一张薄板的出厂价与边长之间满足的函数关系式;
(2)已知出厂一张边长为40cm的薄板,获得的利润为26元(利润=出厂价-成本价),
①求一张薄板的利润与边长之间满足的函数关系式.
②当边长为多少时,出厂一张薄板所获得的利润最大?最大利润是多少?
参考公式:抛物线:y=ax2+bx+c(a≠0)的顶点坐标为(-manfen5.com 满分网manfen5.com 满分网
查看答案
如图,点E是线段BC的中点,分别以BC为直角顶点的△EAB和△EDC均是等腰三角形,且在BC同侧.
(1)AE和ED的数量关系为______;AE和ED的位置关系为______
(2)在图1中,以点E为位似中心,作△EGF与△EAB位似,点H是BC所在直线上的一点,连接GH,HD.分别得到图2和图3.
①在图2中,点F在BE上,△EGF与△EAB的相似比1:2,H是EC的中点.求证:GH=HD,GH⊥HD.
②在图3中,点F在的BE延长线上,△EGF与△EAB的相似比是k:1,若BC=2,请直接写CH的长为多少时,恰好使GH=HD且GH⊥HD(用含k的代数式表示).
manfen5.com 满分网
查看答案
如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y=manfen5.com 满分网(x>0)的函数图象经过点D,点P是一次函数y=kx+3-3k(k≠0)的图象与该反比例函数图象的一个公共点.
(1)求反比例函数的解析式;
(2)通过计算,说明一次函数y=kx+3-3k(k≠0)的图象一定过点C;
(3)对于一次函数y=kx+3-3k(k≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写出过程).

manfen5.com 满分网 查看答案
某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).
manfen5.com 满分网
         甲、乙两人射箭成绩统计表
 第1次第2次第3次第4次第5次
甲成绩94746
乙成绩757a7
(1)a=______manfen5.com 满分网=______
(2)请完成图中表示乙成绩变化情况的折线;
(3)①观察图,可看出______的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.
②请你从平均数和方差的角度分析,谁将被选中.
查看答案
如图,某市A,B两地之间有两条公路,一条是市区公路AB,另一条是外环公路AD-DC-CB,这两条公路围成等腰梯形ABCD,其中DC∥AB,AB:AD:CD=10:5:2.
(1)求外环公路的总长和市区公路长的比;
(2)某人驾车从A地出发,沿市区公路去B地,平均速度是40km/h,返回时沿外环公路行驶,平均速度是80km/h,结果比去时少用了manfen5.com 满分网h,求市区公路的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.