满分5 > 初中数学试题 >

一个几何体的三视图如右图所示,这个几何体是( ) A.圆柱 B.圆锥 C.棱柱 ...

一个几何体的三视图如右图所示,这个几何体是( )
manfen5.com 满分网
A.圆柱
B.圆锥
C.棱柱
D.其它
根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,即可得出答案. 【解析】 由于俯视图为圆形可得为球、圆柱、圆锥.主视图和左视图为三角形可得此几何体为圆锥. 故选B.
复制答案
考点分析:
相关试题推荐
如图,AB是O的直径,点C在圆上,且∠ABC=50°.则∠BAC=( )
manfen5.com 满分网
A.50°
B.40°
C.30°
D.20°
查看答案
下面四个数中,最小的数是( )
A.0
B.1
C.-3
D.-2
查看答案
如图,Rt△ABC在平面直角坐标系中,BC在x轴上,B(-1,0)、A(0,2),AC⊥AB.
(1)求线段OC的长.
(2)点P从B点出发以每秒4个单位的速度沿x轴正半轴运动,点Q从A点出发沿线段AC以manfen5.com 满分网个单位每秒速度向点C运动,当一点停止运动,另一点也随之停止,设△CPQ的面积为S,两点同时运动,运动的时间为t秒,求S与t之间关系式,并写出自变量取值范围.
(3)Q点沿射线AC按原速度运动,⊙G过A、B、Q三点,是否有这样的t值使点P在⊙G上?如果有求t值,如果没有说明理由.

manfen5.com 满分网 查看答案
阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ABP+S△ACP=S△ABC,即:manfen5.com 满分网AB•r1+manfen5.com 满分网AC•r2=manfen5.com 满分网AB•h,∴r1+r2=h
(1)理解与应用
如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在    三角形内任一点”,即:已知边长为2的等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,试证明:manfen5.com 满分网
(2)类比与推理
边长为2的正方形内任意一点到各边的距离的和等于______
(3)拓展与延伸
若边长为2的正n边形A1A2…An内部任意一点P到各边的距离为r1,r2,…rn,请问r1+r2+…rn是否为定值(用含n的式子表示),如果是,请合理猜测出这个定值.
manfen5.com 满分网
查看答案
为了探索代数式manfen5.com 满分网的最小值,小明巧妙的运用了“数形结合”思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则manfen5.com 满分网manfen5.com 满分网,则问题即转化成求AC+CE的最小值.
(1)我们知道当A、C、E在同一直线上时,AC+CE的值最小,于是可求得manfen5.com 满分网的最小值等于______,此时x=______
(2)请你根据上述的方法和结论,试构图求出代数式manfen5.com 满分网的最小值.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.