过P作PD⊥B1C于D,根据等边三角形和平移性质得出∠PB1C=∠C=60°,求出△PCB1是等边三角形,设等边三角形PCB1的边长是2a,得出B1D=CD=a,由勾股定理求出PD,根据三角形的面积公式得出×2a×a=,求出a即可.
【解析】
过P作PD⊥B1C于D,
∵将等边△ABC沿BC方向平移得到△A1B1C1,
∴∠PB1C=∠C=60°,
∴∠CPB1=60°,
∴△PCB1是等边三角形,
设等边三角形PCB1的边长是2a,
则B1D=CD=a,
由勾股定理得:PD=a,
∵,
∴×2a×a=,
解得:a=1,
∴B1C=2,
∴BB1=3-2=1.
故答案为:1.