满分5 > 初中数学试题 >

如图,已知直线l1:y=x+与直线l2:y=-2x+16相交于点C,l1、l2分...

如图,已知直线l1:y=manfen5.com 满分网x+manfen5.com 满分网与直线l2:y=-2x+16相交于点C,l1、l2分别交x轴于A、B两点.矩形DEFG的顶点D、E分别在直线l1、l2上,顶点F、G都在x轴上,且点G与点B重合.
(1)求△ABC的面积;
(2)求矩形DEFG的边DE与EF的长;
(3)若矩形DEFG沿x轴的反方向以每秒1个单位长度的速度平移,设移动时间为t(0≤t≤12)秒,矩形DEFG与△ABC重叠部分的面积为S,求S关于t的函数关系式,并写出相应的t的取值范围.

manfen5.com 满分网
(1)把y=0代入l1解析式求出x的值便可求出点A的坐标.令x=0代入l2的解析式求出点B的坐标.然后可求出AB的长. 联立方程组可求出交点C的坐标,继而求出三角形ABC的面积. (2)已知xD=xB=8易求D点坐标.又已知yE=yD=8可求出E点坐标.故可求出DE,EF的长. (3)作CM⊥AB于M,证明Rt△RGB∽Rt△CMB利用线段比求出RG=2t.又知道S=S△ABC-S△BRG-S△AFH,根据三角形面积公式可求出S关于t的函数关系式. 【解析】 (1)由x+=0,得x=-4. ∴A点坐标为(-4,0), 由-2x+16=0, 得x=8. ∴B点坐标为(8,0), ∴AB=8-(-4)=12, 由,解得 ∴C点的坐标为(5,6), ∴S△ABC=AB•yC=×12×6=36. (2)∵点D在l1上且xD=xB=8, ∴yD=×8+=8, ∴D点坐标为(8,8), 又∵点E在l2上且yE=yD=8, ∴-2xE+16=8, ∴xE=4, ∴E点坐标为(4,8), ∴DE=8-4=4,EF=8. (3)①当0≤t<3时,如图1,矩形DEFG与△ABC重叠部分为五边形CHFGR(t=0时,为四边形CHFG). 过C作CM⊥AB于M,则Rt△RGB∽Rt△CMB, ∴,即,∴RG=2t, ∵Rt△AFH∽Rt△AMC, ∴S=S△ABC-S△BRG-S△AFH=36-×t×2t-(8-t)×(8-t), 即S=-t2+t+. ②当3≤t<8时,如图2所示,矩形DEFG与△ABC重叠部分为梯形HFGR,由①知,HF=(8-t), ∵Rt△AGR∽Rt△AMC, ∴=,即=,∴RG=(12-t), ∴S=(HF+RG)×FG=[(8-t)+(12-t)]×4, 即S=-t+; ③当8≤t≤12时,如图3所示,矩形DEFG与△ABC重叠部分为△AGR, 由②知,AG=12-t,RG=(12-t), ∴S=AG•RG=(12-t)×(12-t)即S=(12-t)2, ∴S=t2-8t+48.
复制答案
考点分析:
相关试题推荐
某汽车经销公司计划经销A、B两种品牌的轿车50辆,该公司经销这50辆轿车的成本不少于1240万元,但不超过1244万元,两种轿车的成本和售价如下表.
AB
成本(万元/辆)2426
售价(万元/辆)2730
(1)该公司经销这两种品牌轿车有哪几种方案,哪种方案获利最大,最大利润是多少?
(2)根据市场调查,一段时期内,B牌轿车售价不会改变,每辆A牌轿车的售价将会提高a万元(0<a<1.2),且所有两种轿车全部售出,哪种经销方案获利最大?(注:利润=售价-成本)
查看答案
如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.
(1)求证:BD=CD;
(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.

manfen5.com 满分网 查看答案
要在宽为28m的海堤公路的路边安装路灯,路灯的灯臂长为3m,且与灯柱成120°(如图所示),路灯采用圆锥形灯罩,灯罩的轴线与灯臂垂直.当灯罩的轴线通过公路路面的中线时,照明效果最理想.问:应设计多高的灯柱,才能取得最理想的照明效果(精确到0.01m,manfen5.com 满分网≈1.732).

manfen5.com 满分网 查看答案
某市教育行政部门为了了解初一学生每学期参加综合实践活动的情况,随机抽样调查了某校初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:
manfen5.com 满分网
(1)求出扇形统计图中a的值,并求出该校初一学生总数;
(2)分别求出活动时间为5天、7天的学生人数,并补全频数分布直方图;
(3)求出扇形统计图中“活动时间为4天”的扇形所对圆心角的度数;
(4)在这次抽样调查中,众数和中位数分别是多少?
(5)如果该市共有初一学生6000人,请你估计“活动时间不少于4天”的大约有多少人?
查看答案
将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.
(1)从中随机抽出一张牌,牌面数字是偶数的概率是______
(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是______
(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.