满分5 > 初中数学试题 >

如图,△ABC内接于⊙O,且∠B=60°.过点C作圆的切线l与直径AD的延长线交...

如图,△ABC内接于⊙O,且∠B=60°.过点C作圆的切线l与直径AD的延长线交于点E,AF⊥l,垂足为F,CG⊥AD,垂足为G.
(1)求证:△ACF≌△ACG;
(2)若AF=4manfen5.com 满分网,求图中阴影部分的面积.

manfen5.com 满分网
(1)连接CD,OC.根据圆周角定理的推论求得ADC=∠B=60°,根据直径所对的圆周角是直角得AC⊥CD,则根据等角的余角相等得到∠ACG=∠ADC=60°,从而得到△OCD为正三角形,进一步求得∠ECD=30°,证明∠ACF=∠ACG=60°.最后根据AAS即可证明三角形全等; (2)结合图形,可以把阴影部分的面积转化为三角形COE的面积减去扇形OCD的面积.根据30°的直角三角形的性质即可求得OC、CE的长,从而求解. (1)证明:如图,连接CD,OC,则∠ADC=∠B=60°. ∵AD是圆的直径, ∴∠ACD=90° 又∵∠ADC=∠B=60° ∴∠CAD=30° ∵EF与圆相切, ∴∠FCA=∠ADC=60° ∴直角△ACF中,∠FAC=30°, ∴∠FAC=∠CAD, 又∵CG⊥AD,AF⊥EF ∴FC=CG 则在△ACF和△ACG中: ∴△ACF≌△ACG(AAS). (2)【解析】 在Rt△ACF中,∠ACF=60°,AF=4, ∴∠FAC=30°, ∴FC=AC, 设FC=x,则AC=2x, (2x)2-x2=(4)2, 解得:x=4, ∴CF=4. 在Rt△OCG中,∠COG=60°,CG=CF=4,得OC==. 在Rt△CEO中,OE=. 于是S阴影=S△CEO-S扇形COD==-=.
复制答案
考点分析:
相关试题推荐
如图,已知反比例函数manfen5.com 满分网与一次函数y=x+b的图象在第一象限相交于点A(1,-k+4).
(1)试确定这两个函数的表达式;
(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.

manfen5.com 满分网 查看答案
已知关于x的一元二次方程x2=2(1-m)x-m2的两实数根为x1,x2
(1)求m的取值范围;
(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.
查看答案
如图,△ABC在方格纸中
(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;
(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′;
(3)计算△A′B′C′的面积S.

manfen5.com 满分网 查看答案
如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交CD于点F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的数量和位置关系,并说明理由.

manfen5.com 满分网 查看答案
先化简:manfen5.com 满分网;若结果等于manfen5.com 满分网,求出相应x的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.