过点D作DE∥AC交BC的延长线于点E,作DF⊥BC于F,证平行四边形ADEC,推出AC=DE=BD,∠BDE=90°,根据等腰三角形性质推出BF=DF=EF=BE,求出DF,根据梯形的面积公式求出即可.
【解析】
过点D作DE∥AC交BC的延长线于点E,
∵AD∥BC(已知),
即AD∥CE,
∴四边形ACED是平行四边形,
∴AD=CE=3,AC=DE,
在等腰梯形ABCD中,AC=DB,
∴DB=DE(等量代换),
∵AC⊥BD,AC∥DE,
∴DB⊥DE,
∴△BDE是等腰直角三角形,
作DF⊥BC于F,
则DF=BE=5,
S梯形ABCD=(AD+BC)•DF=(3+7)×5=25,
故选A.