满分5 > 初中数学试题 >

已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以AD...

已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.
(1)如图1,当点D在边BC上时,
①求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;
(2)如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC是否成立?请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;
(3)如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.
manfen5.com 满分网
(1)此题只需由AB=AC,AD=AF,∠BAD=∠CAF,按照SAS判断两三角形全等得出∠ADB=∠AFC; (2)此题应先判断得出正确的等量关系,然后再根据△ABD≌△ACF即可证明; (3)此题只需补全图形后由图形即可得出∠AFC、∠ACB、∠DAC之间存在的等量关系. 【解析】 (1)①证明:∵△ABC为等边三角形, ∴AB=AC,∠BAC=60°, ∵∠DAF=60°, ∴∠BAC=∠DAF, ∴∠BAD=∠CAF, ∵四边形ADEF是菱形,∴AD=AF, 在△ABD和△ACF中 AB=AC,∠BAD=∠CAF,AD=AF, ∴△ABD≌△ACF, ∴∠ADB=∠AFC, ②结论:∠AFC=∠ACB+∠DAC成立. (2)结论∠AFC=∠ACB+∠DAC不成立. ∠AFC、∠ACB、∠DAC之间的等量关系是∠AFC=∠ACB-∠DAC. 证明:∵△ABC为等边三角形, ∴AB=AC, ∠BAC=60°, ∵∠BAC=∠DAF, ∴∠BAD=∠CAF, ∵四边形ADEF是菱形, ∴AD=AF. 在△ABD和△ACF中 AB=AC,∠BAD=∠CAF,AD=AF, ∴△ABD≌△ACF. ∴∠ADB=∠AFC. 又∵∠ACB=∠ADC+∠DAC, ∴∠AFC=∠ACB-∠DAC. (3)补全图形如下图: ∠AFC、∠ACB、∠DAC之间的等量关系是:∠AFC=2∠ACB-∠DAC (或∠AFC+∠DAC+∠ACB=180°以及这两个等式的正确变式).
复制答案
考点分析:
相关试题推荐
某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲、乙两厂的印刷费用y(千元)与证书数量x(千个)的函数关系图象分别如图中甲、乙所示.
(1)请你直接写出甲厂的制版费y与x的函数解析式,并求出其证书印刷单价.
(2)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元?
(3)如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元?

manfen5.com 满分网 查看答案
已知:如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且∠CBD=∠A.
(1)判断直线BD与⊙O的位置关系,并证明你的结论;
(2)若AD:AO=8:5,BC=2,求BD的长.

manfen5.com 满分网 查看答案
如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D,过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.
(1)①当α=______度时,四边形EDBC是等腰梯形,此时AD的长为______
②当α=______度时,四边形EDBC是直角梯形,此时AD的长为______
(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.

manfen5.com 满分网 查看答案
某超市将某品牌书包的售价从原来80元/个经两次调价后调至64.8元/个.
(1)若该超市两次调价的降价率相同,求这个降价率.
(2)经调查,该书包每降价4元,即可多销售5个,若该超市原来每月可销售书包120个,那么两次调价后,每月可销售这种品牌的书包多少个?
查看答案
吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康.我国从2011年1月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下两个统计图:
manfen5.com 满分网
根据统计图解答:
(1)同学们一共随机调查了多少人?
(2)请你把扇形统计图和条形统计图补充完整;
(3)如果该社区有1000人,请估计该地区大约有多少人支持“警示戒烟”这种方式.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.