满分5 > 初中数学试题 >

如图,在平面直角坐标系中.四边形OABC是平行四边形.直线l经过O、C两点.点A...

如图,在平面直角坐标系中.四边形OABC是平行四边形.直线l经过O、C两点.点A的坐标为(8,0),点B的坐标为(11,4),动点P在线段OA上从点O出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O一C-B相交于点M.当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒(t>0).△MPQ的面积为S.
(1)点C的坐标为______,直线l的解析式为______
(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围.
(3)试求题(2)中当t为何值时,S的值最大,并求出S的最大值.
(4)随着P、Q两点的运动,当点M在线段CB上运动时,设PM的延长线与直线l相交于点N.试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.
manfen5.com 满分网
(1)由平行四边形的性质和点A、B的坐标便可求出C点坐标,将C点坐标代入正比例函数即可求得直线l的解析式; (2)根据题意,得OP=t,AQ=2t,根据t的取值范围不同分三种情况分别进行讨论,得到三种S关于t的函数,解题时注意t的取值范围; (3)分别根据三种函数解析式求出当t为何值时,S最大,然后比较三个最大值,可知当t=时,S有最大值,最大值为; (4)根据题意并细心观察图象,分两种情况讨论可知:当t=时,△QMN为等腰三角形. 【解析】 (1)由题意知:点A的坐标为(8,0),点B的坐标为(11.4), 且OA=BC,故C点坐标为C(3,4), 设直线l的解析式为y=kx, 将C点坐标代入y=kx, 解得k=, ∴直线l的解析式为y=x; 故答案为:(3,4),y=x; (2)根据题意,得OP=t,AQ=2t.分三种情况讨论: ①当0<t≤时,如图1,M点的坐标是(t,t). 过点C作CD⊥x轴于D,过点Q作QE⊥x轴于E,可得△AEQ∽△ODC, ∴, ∴, ∴AE=,EQ=t, ∴Q点的坐标是(8+t,t), ∴PE=8+t, ∴S=t, ②当<t≤3时,如图2,过点Q作QF⊥x轴于F, ∵BQ=2t-5, ∴OF=11-(2t-5)=16-2t, ∴Q点的坐标是(16-2t,4), ∴PF=16-2t-t=16-3t, ∴S=t, ③当点Q与点M相遇时,16-2t=t,解得t=. 当3<t<时,如图3,MQ=16-2t-t=16-3t,MP=4. S=•4•(16-3t)=-6t+32, 所以S=; (3)①当0<t≤时,S=, ∵a=>0,抛物线开口向上,t=时,最大值为; ②当<t≤3时,S=-2t2+. ∵a=-2<0,抛物线开口向下. ∴当t=时,S有最大值,最大值为. ③当3<t<时,S=-6t+32, ∵k=-6<0. ∴S随t的增大而减小. 又∵当t=3时,S=14.当t=时,S=0. ∴0<S<14. 综上所述,当t=时,S有最大值,最大值为. (4)当M点在线段CB上运动时,点Q一定在线段CB上, ①点Q在点M右侧,QM=xQ-xM=16-2t-t=16-3t,NM=NP-MP=t-4 则有16-3t=t-4 解得t=; ②点Q在点M左侧,QM=xM-xQ=3t-16,NM=NP-MP=t-4 则有3t-16=t-4 解得t= 但是,点Q的运动时间为(5+8)÷2=6.5秒,故将②舍去. 当t=时,△QMN为等腰三角形.
复制答案
考点分析:
相关试题推荐
为了实现“畅通重庆”的目标,重庆地铁一号线(朝天门至沙坪坝)已于2007年6月8日开始动工,到2011年建成投入使用.重庆市政府现对地铁一号线第15标段(小龙坎站到三峡广场站)工程施工进行招标,施工距离全长为300米.经招标协定,该工程由甲、乙两公司承建,甲、乙两公司施工方案及报价分别为:(1)甲公司施工单价y1(万元/米)与施工长度x(米)之间的函数关系为y1=27.8-0.09x,(2)乙公司施工单价y2(万元/米)与施工长度x(米)之间的函数关系为y2=15.8-0.05x.(注:工程款=施工单价×施工长度)
(1)如果不考虑其它因素,单独由甲公司施工,那么完成此项工程需工程款多少万元?
(2)考虑到设备和技术等因素,甲公司必须邀请乙公司联合施工,共同完成该工程.因设备共享,两公司联合施工时市政府可节省工程款140万元(从工程款中扣除).
①如果设甲公司施工a米(O<a<300),那么乙公司施工______米,其施工单价y2=______万元/米,试求市政府共支付工程款P(万元)与a(米)之间的函数关系式;
②如果市政府支付的工程款为2900万元,那么甲公司应将多长的施工距离安排给乙公司施工?
查看答案
已知,如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB交AB于点E,且CD=AC,DF∥BC,分别与AB、AC交于点G、F.
(1)求证:GE=GF;
(2)若BD=1,求DF的长.

manfen5.com 满分网 查看答案
某公司组织部分员工到一博览会的A、B、C、D、E五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示.
manfen5.com 满分网
请根据统计图回答下列问题:
(1)将条形统计图和扇形统计图在图中补充完整;
(2)若B馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,将牌放回洗匀背面朝上放置在桌面上,再由另一人抽.若抽出的两次数字之积为偶数则小明获得门票,反之小华获得门票.”请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平.
查看答案
已知:如图,已知一次函数y=x+1的图象与反比例函数manfen5.com 满分网的图象在第一象限相交于点A,与x轴相交于点C,AB⊥x轴于点B,△AOB的面积为1,求AC的长为多少?(结果保留根号).

manfen5.com 满分网 查看答案
先化简,再求值:manfen5.com 满分网,其中x=2-manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.