满分5 > 初中数学试题 >

如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2与x轴交于点C,直线...

如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2与x轴交于点C,直线y=-2x-1经过抛物线上一点B(-2,m),且与y轴、直线x=2分别交于点D、E.
(1)求m的值及该抛物线对应的函数关系式;
(2)求证:①CB=CE;②D是BE的中点;
(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE?若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)可根据直线y=-2x-1求出B点的坐标,根据A、O关于直线x=2对称,可得出A点的坐标,已知了抛物线上三点坐标即可用待定系数法求出抛物线的解析式; (2)先求出C、B、E、D四点的坐标, ①根据C、B、E三点的坐标可求出CB,CE的长,判断它们是否相等即可; ②本题可通过构建全等三角形来求解,过B作BF⊥y轴于F,过E作EH⊥y轴于H,根据B、D、E三点坐标即可得出BF=EH,DF=DH,通过证两三角形全等即可得出BD=DE即D是BE中点的结论; (3)若PB=PE,则P点必在线段BE的垂直平分线上即直线CD上,可求出直线CD的解析式,联立抛物线即可求出P点的坐标. (1)【解析】 ∵点B(-2,m)在直线y=-2x-1上 ∴m=-2×(-2)-1=3 ∴B(-2,3) ∵抛物线经过原点O和点A,对称轴为x=2 ∴点A的坐标为(4,0) 设所求的抛物线对应函数关系式为y=a(x-0)(x-4) 将点B(-2,3)代入上式,得3=a(-2-0)(-2-4) ∴a= ∴所求的抛物线对应的函数关系式为y=x(x-4) 即y=x2-x; (2)证明:①直线y=-2x-1与y轴、直线x=2的交点坐标分别为D(0,-1)E(2,-5), 过点B作BG∥x轴,与y轴交于F、直线x=2交于G, 则BG⊥直线x=2,BG=4 在Rt△BGC中,BC= ∵CE=5, ∴CB=CE=5 ②过点E作EH∥x轴,交y轴于H, 则点H的坐标为H(0,-5) 又点F、D的坐标为F(0,3)、D(0,-1) ∴FD=DH=4,BF=EH=2,∠BFD=∠EHD=90° ∴△DFB≌△DHE(SAS) ∴BD=DE 即D是BE的中点; (3)【解析】 存在. 由于PB=PE,∴点P在直线CD上 ∴符合条件的点P是直线CD与该抛物线的交点 设直线CD对应的函数关系式为y=kx+b 将D(0,-1)C(2,0)代入,得, 解得k=,b=-1 ∴直线CD对应的函数关系式为y=x-1 ∵动点P的坐标为(x,x2-x) ∴x-1=x2-x 解得x1=3+,x2=3- ∴y1=,y2= ∴符合条件的点P的坐标为(3+,)或(3-,).
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网在某张航海图上,标明了三个观测点的坐标为O(0,0)、B(12,0)、C(12,16),由三个观测点确定的圆形区域是海洋生物保护区,如图所示.
(1)求圆形区域的面积(π取3.14);
(2)某时刻海面上出现一渔船A,在观测点O测得A位于北偏东45°方向上,同时在观测点B测得A位于北偏东30°方向上,求观测点B到渔船A的距离(结果保留三个有效数字);
(3)当渔船A由(2)中的位置向正西方向航行时,是否会进入海洋生物保护区?请通过计算解释.
查看答案
manfen5.com 满分网如图,AB为⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,已知∠D=30°.
(1)求∠A的度数;
(2)若点F在⊙O上,CF⊥AB,垂足为E,CF=manfen5.com 满分网,求图中阴影部分的面积.
查看答案
如图所示,E是正方形ABCD的边AB上的动点,EF⊥DE交BC于点F.
(1)求证:△ADE∽△BEF;
(2)设正方形的边长为4,AE=x,BF=y.当x取什么值时,y有最大值?并求出这个最大值.

manfen5.com 满分网 查看答案
某学校为了进一步丰富学生的体育活动,欲增购一些体育器材,为此对该校一部分学生进行了一次“你最喜欢的体育活动”的问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整):
请根据图中提供的信息,完成下列问题:
(1)在这次问卷调查中,一共抽查了______名学生;
(2)请将上面两幅统计图补充完整;
(3)图①中,“踢毽”部分所对应的圆心角为______度;
(4)如果全校有1860名学生,请问全校学生中,最喜欢“球类”活动的学生约有多少人?
manfen5.com 满分网
查看答案
先化简,再求值:manfen5.com 满分网,其中x=2+manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.