已知:如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AD和BC相交于点E,EF⊥BD,垂足为F,我们可以证明
成立(不要求考生证明).
若将图中的垂线改为斜交,如图,AB∥CD,AD,BC相交于点E,过点E作EF∥AB交BD于点F,则:
(1)
还成立吗?如果成立,请给出证明;如果不成立,请说明理由;
(2)请找出S
△ABD,S
△BED和S
△BDC间的关系式,并给出证明.
考点分析:
相关试题推荐
有A、B两个黑布袋,A布袋中有四个除标号外完全相同的小球,小球上分别标有数字0,1,2,3,B布袋中有三个除标号外完全相同的小球,小球上分别标有数字0,1,2.小明先从A布袋中随机取出一个小球,用m表取出的球上标有的数字,再从B布袋中随机取出一个小球,用n表示取出的球上标有的数字.
(1)若用(m,n)表示小明取球时m与n的对应值,请画出树状图并写出(m,n)的所有取值;
(2)求关于x的一元二次方程x
2-mx+
n=0有实数根的概率.
查看答案
如图,▱ABCD中,点E是CD延长线上一点,BE交AD于点F,DE=
CD.
(1)求证:△ABF∽△CEB
(2)若△DEF的面积为2,求▱ABCD的面积.
(3)若G、H分别为BF、AB的中点,AG、FH交于点O,求
.
查看答案
已知关于x的方程x
2-2(m+1)x+m
2=0,
(1)当m取什么值时,原方程没有实数根;
(2)对m选取一个合适的非零整数,使原方程有两个实数根,并求这两个实数根的平方和.
查看答案
已知x是一元二次方程x
2+3x-1=0的实数根,求代数式:
的值.
查看答案
如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE过△ABC的内切圆圆心O,且点E在半圆弧上.
①若正方形的顶点F也在半圆弧上,则半圆的半径与正方形边长的比是
;
②若正方形DEFG的面积为100,且△ABC的内切圆半径r=4,则半圆的直径AB=
.
查看答案