满分5 > 初中数学试题 >

如图,在平面直角坐标系xOy中,已知抛物线经过点A(0,4),B(1,0),C(...

如图,在平面直角坐标系xOy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线的对称轴l与x轴相交于点M.
(1)求抛物线对应的函数解析式和对称轴;
(2)设点P为抛物线(x>5)上的一点,若以A、O、M、P为顶点的四边形的四条边的长度为四个连续的正整数,请你直接写出点P的坐标;
(3)连接AC,探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)抛物线经过点A(0,4),B(1,0),C(5,0),可利用两点式法设抛物线的解析式为y=a(x-1)(x-5),代入A(0,4)即可求得函数的解析式,则可求得抛物线的对称轴; (2)由已知,可求得P(6,4),由题意可知以A、O、M、P为顶点的四边形有两条边AO=4、OM=3,又知点P的坐标中x>5,所以MP>2,AP>2;因此以1、2、3、4为边或以2、3、4、5为边都不符合题意,所以四条边的长只能是3、4、5、6的一种情况,则分析求解即可求得答案; (3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,t2-t+4)(0<t<5),再求得直线AC的解析式,即可求得NG的长与△ACN的面积,由二次函数最大值的问题即可求得答案. 【解析】 (1)根据已知条件可设抛物线的解析式为y=a(x-1)(x-5), 将点A(0,4)代入上式解得:a=, 即可得函数解析式为:y=(x-1)(x-5)=x2-x+4=(x-3)2-, 故抛物线的对称轴是:x=3; (2)P点坐标为:(6,4), 由题意可知以A、O、M、P为顶点的四边形有两条边AO=4、OM=3, 又∵点P的坐标中x>5, ∴MP>2,AP>2; ∴以1、2、3、4为边或以2、3、4、5为边都不符合题意, ∴四条边的长只能是3、4、5、6的一种情况, 在Rt△AOM中,AM===5, ∵抛物线对称轴过点M, ∴在抛物线x>5的图象上有关于点A的对称点与M的距离为5, 即PM=5,此时点P横坐标为6,即AP=6; 故以A、O、M、P为顶点的四边形的四条边长度分别是四个连续的正整数3、4、5、6成立, 即P(6,4); (3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大. 设N点的横坐标为t,此时点N(t,t2-t+4)(0<t<5), 过点N作NG∥y轴交AC于G,作AM⊥NG于M, 由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=-x+4; 把x=t代入y=-x+4,则可得G(t,-t+4), 此时:NG=-x+4-(t2-t+4)=-t2+4t, ∵AM+CB=CO, ∴S△ACN=S△ANG+S△CGN=AM×NG+NG×CB=NG•OC=(-t2+4t)×5=-2t2+10t=-2(t-)2+, ∴当t=时,△CAN面积的最大值为, 由t=,得:y=t2-t+4=-3, ∴N(,-3).
复制答案
考点分析:
相关试题推荐
请阅读下列材料:
问题:已知方程x2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.
【解析】
设所求方程的根为y,则y=2x所以x=manfen5.com 满分网
把x=manfen5.com 满分网代入已知方程,得(manfen5.com 满分网2+manfen5.com 满分网-1=0
化简,得y2+2y-4=0
故所求方程为y2+2y-4=0.
这种利用方程根的代换求新方程的方法,我们称为“换根法”.
请用阅读村料提供的“换根法”求新方程(要求:把所求方程化为一般形式):
(1)已知方程x2+x-2=0,求一个一元二次方程,使它的根分别为己知方程根的相反数,则所求方程为:______
(2)己知关于x的一元二次方程ax2+bx+c=0有两个不等于零的实数根,求一个一元二次方程,使它的根分别是己知方程根的倒数.
查看答案
某工厂计划生产A,B两种产品共10件,其生产成本和利润如下表:
A种产品B种产品
成本(万元/件)25
利润(万元/件)13
(1)若工厂计划获利14万元,问A,B两种产品应分别生产多少件?
(2)若工厂计划投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?
(3)在(2)的条件下,哪种生产方案获利最大?并求出最大利润.
查看答案
近几年我市加大中职教育投入力度,取得了良好的社会效果.某校随机调查了九年级m名学生的升学意向,并根据调查结果绘制出如下两幅不完整的统计图.请你根据图中的信息解答下列问题:
(1)m=______
(2)扇形统计图中“职高”对应的扇形的圆心角α=______
(3)请补全条形统计图;
(4)若该校九年级有学生900人,估计该校共有多少名毕业生的升学意向是职高?
manfen5.com 满分网
查看答案
如图,△ABC内接于⊙O,AB=8,AC=4,D是AB边上一点,P是优弧manfen5.com 满分网的中点,连接PA、PB、PC、PD,当BD的长度为多少时,△PAD是以AD为底边的等腰三角形?并加以证明.

manfen5.com 满分网 查看答案
(1)计算:-2sin30°-manfen5.com 满分网+manfen5.com 满分网-manfen5.com 满分网+(-1)2012
(2)解方程:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.