如图,在平面直角坐标系xOy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线的对称轴l与x轴相交于点M.
(1)求抛物线对应的函数解析式和对称轴;
(2)设点P为抛物线(x>5)上的一点,若以A、O、M、P为顶点的四边形的四条边的长度为四个连续的正整数,请你直接写出点P的坐标;
(3)连接AC,探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
请阅读下列材料:
问题:已知方程x
2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.
【解析】
设所求方程的根为y,则y=2x所以x=
.
把x=
代入已知方程,得(
)
2+
-1=0
化简,得y
2+2y-4=0
故所求方程为y
2+2y-4=0.
这种利用方程根的代换求新方程的方法,我们称为“换根法”.
请用阅读村料提供的“换根法”求新方程(要求:把所求方程化为一般形式):
(1)已知方程x
2+x-2=0,求一个一元二次方程,使它的根分别为己知方程根的相反数,则所求方程为:______;
(2)己知关于x的一元二次方程ax
2+bx+c=0有两个不等于零的实数根,求一个一元二次方程,使它的根分别是己知方程根的倒数.
查看答案
某工厂计划生产A,B两种产品共10件,其生产成本和利润如下表:
| A种产品 | B种产品 |
成本(万元/件) | 2 | 5 |
利润(万元/件) | 1 | 3 |
(1)若工厂计划获利14万元,问A,B两种产品应分别生产多少件?
(2)若工厂计划投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?
(3)在(2)的条件下,哪种生产方案获利最大?并求出最大利润.
查看答案
近几年我市加大中职教育投入力度,取得了良好的社会效果.某校随机调查了九年级m名学生的升学意向,并根据调查结果绘制出如下两幅不完整的统计图.请你根据图中的信息解答下列问题:
(1)m=______;
(2)扇形统计图中“职高”对应的扇形的圆心角α=______;
(3)请补全条形统计图;
(4)若该校九年级有学生900人,估计该校共有多少名毕业生的升学意向是职高?
查看答案
如图,△ABC内接于⊙O,AB=8,AC=4,D是AB边上一点,P是优弧
的中点,连接PA、PB、PC、PD,当BD的长度为多少时,△PAD是以AD为底边的等腰三角形?并加以证明.
查看答案
(1)计算:-2sin30°-
+
-
+(-1)
2012(2)解方程:
.
查看答案