满分5 > 初中数学试题 >

已知抛物线y=ax2+bx+c的图象交x轴于点A(x,0)和点B(2,0),与y...

已知抛物线y=ax2+bx+c的图象交x轴于点A(x,0)和点B(2,0),与y轴的正半轴交于点C,其对称轴是直线x=-1,tan∠BAC=2,点A关于y轴的对称点为点D.
(1)确定A、C、D三点的坐标;
(2)求过B、C、D三点的抛物线的解析式;
(3)若过点(0,3)且平行于x轴的直线与(2)小题中所求抛物线交于M、N两点,以MN为一边,抛物线上任意一点P(x,y)为顶点作平行四边形,若平行四边形的面积为S,写出S关于P点纵坐标y的函数解析式;
(4)当manfen5.com 满分网<x<4时,(3)小题中平行四边形的面积是否有最大值?若有,请求出;若无,请说明理由.
(1)因为已知B点坐标和对称轴,所以可根据对称轴公式求出A点坐标;根据锐角三角函数的定义可求出C点坐标,根据x轴上的点关于y轴对称的特点可求出D点坐标. (2)因为B、D两点为抛物线与x轴的交点,所以可设出二次函数的交点式,再用待定系数法求出函数的解析式. (3)根据过点(0,3)且平行于x轴的直线与(2)中的抛物线相交于M.N,可求出M、N的坐标,及两点之间的距离,再根据抛物线的顶点坐标求出P点纵坐标y的取值范围,根据其取值范围即可求出S与y之间的函数关系式. (4)因为MN之间的距离为定值,故只要在<x<4范围内|y|最大,则平行四边形的面积最大.根据(3)中S与y之间的函数关系式即可求出S的最大值. 【解析】 (1)∵点A与点B关于直线x=-1对称,点B的坐标是(2,0) ∴点A的横坐标是=-1,x=-4, 故点A的坐标是(-4,0)(1分) ∵tan∠BAC=2即=2,可得OC=8 ∴C(0,8)(2分) ∵点A关于y轴的对称点为D ∴点D的坐标是(4,0)(3分) (2)设过三点的抛物线解析式为y=a(x-2)(x+4) 代入点C(0,8),解得a=-1(4分) ∴抛物线的解析式是y=-x2-2x+8;(5分) (3)∵抛物线y=-x2-2x+8与过点(0,3)平行于x轴的直线相交于M点和N点 ∴M(1,3),N(5,3),|MN|=4(6分) 而抛物线的顶点为(3,-1) 当y>3时 S=4(y-3)=4y-12 当-1≤y<3时 S=4(3-y)=-4y+12(8分) (4)以MN为一边,P(x,y)为顶点,且当<x<4的平行四边形面积最大,只要点P到MN的距离h最大 ∴当x=3,y=-1时,h=4 S=|MN|•h=4×4=16 ∴满足条件的平行四边形面积有最大值16.(10分)
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,直线manfen5.com 满分网分别交x轴,y轴于A,B两点,点C为OB的中点,点D在第二象限,且四边形AOCD为矩形.
(1)直接写出点A,B的坐标,并求直线AB与CD交点的坐标;
(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动;同时,动点M从点A出发,沿线段AB以每秒manfen5.com 满分网个单位长度的速度向终点B运动,过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒.
①若△MPH与矩形AOCD重合部分的面积为1,求t的值;
②点Q是点B关于点A的对称点,问BP+PH+HQ是否有最小值?如果有,求出相应的点P的坐标;如果没有,请说明理由.
manfen5.com 满分网
查看答案
阅读理【解析】

对于任意正实数a,b,∵manfen5.com 满分网≥0,∴a-manfen5.com 满分网+b≥0,∴a+b≥2manfen5.com 满分网,只有点a=b时,等号成立.
结论:在a+b≥2manfen5.com 满分网(a,b均为正实数)中,若ab为定值p,则a+b≥manfen5.com 满分网,只有当a=b时,a+b有最小值2manfen5.com 满分网
根据上述内容,回答下列问题:
(1)若m>0,只有当m=______时,m+manfen5.com 满分网有最小值______
(2)思考验证:
①如图1,AB为半圆O的直径,C为半圆上任意一点,(与点A,B不重合).过点C作CD⊥AB,垂足为D,AD=a,DB=b.试根据图形验证a+b≥manfen5.com 满分网,并指出等号成立时的条件;
②探索应用:如图2,已知A(-3,0),B(0,-4)P为双曲线manfen5.com 满分网上的任意一点,过点P作PC⊥x轴于点C,PO⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.
manfen5.com 满分网
查看答案
如图,A是以BC为直径的⊙O上一点,于点D,AD⊥BC过点B作⊙O的切线,与CA的延长线相交于点E,G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.
(1)求证:BF=EF;
(2)求证:PA是⊙O的切线;
(3)若FG=BF,且⊙O的半径长为manfen5.com 满分网,求BD和FG的长度.

manfen5.com 满分网 查看答案
某汽车经销公司计划经销A、B两种品牌的轿车50辆,该公司经销这50辆轿车的成本不少于1240万元,但不超过1244万元,两种轿车的成本和售价如下表.
AB
成本(万元/辆)2426
售价(万元/辆)2730
(1)该公司经销这两种品牌轿车有哪几种方案,哪种方案获利最大,最大利润是多少?
(2)根据市场调查,一段时期内,B牌轿车售价不会改变,每辆A牌轿车的售价将会提高a万元(0<a<1.2),且所有两种轿车全部售出,哪种经销方案获利最大?(注:利润=售价-成本)
查看答案
如图所示,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD,等边△ACE、等边△BCF.
(1)求证:四边形DAEF是平行四边形;
(2)探究下列问题:(只填满足的条件,不需证明)
①当△ABC满足______条件时,四边形DAEF是矩形;
②当△ABC满足______条件时,四边形DAEF是菱形;
③当△ABC满足______条件时,以D、A、E、F为顶点的四边形不存在.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.