满分5 > 初中数学试题 >

如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA<8),以O为圆...

如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA<8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作⊙O的切线交边BC于N.
(1)求证:△ODM∽△MCN;
(2)设DM=x,求OA的长(用含x的代数式表示);
(3)在点O的运动过程中,设△CMN的周长为P,试用含x的代数式表示P,你能发现怎样的结论?

manfen5.com 满分网
(1)依题意可得∠OMC=∠MNC,然后可证得△ODM∽△MCN. (2)设DM=x,OA=OM=R,OD=AD-OA=8-R,根据勾股定理求出OA的值. (3)由1可求证△ODM∽△MCN,利用线段比求出CN,MN的值.然后可求出△CMN的周长等于CM+CN+MN,把各个线段消去代入可求出周长. (1)证明:∵MN切⊙O于点M, ∴∠OMN=90°;(1分) ∵∠OMD+∠CMN=90°,∠CMN+∠CNM=90°; ∴∠OMD=∠MNC;(2分) 又∵∠D=∠C=90°; ∴△ODM∽△MCN,(3分) (2)【解析】 在Rt△ODM中,DM=x,设OA=OM=R; ∴OD=AD-OA=8-R,(4分) 由勾股定理得:(8-R)2+x2=R2,(5分) ∴64-16R+R2+x2=R2, ∴;(6分) (3)解法一:∵CM=CD-DM=8-x, 又∵, 且有△ODM∽△MCN, ∴, ∴代入得到;(7分) 同理, ∴代入得到;(8分) ∴△CMN的周长为P==(8-x)+(x+8)=16.(9分) 发现:在点O的运动过程中,△CMN的周长P始终为16,是一个定值.(10分) 解法二:在Rt△ODM中,, 设△ODM的周长P′=;(7分) 而△MCN∽△ODM,且相似比;(8分) ∵, ∴△MCN的周长为P=.(9分) 发现:在点O的运动过程中,△CMN的周长P始终为16,是一个定值.(10分)
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.
(1)分别求出图中直线和抛物线的函数表达式;
(2)连接PO、PC,并把△POC沿C O翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,有一直角△ABC,且A(0,5),B(-5,2),C(0,2),并已知△AA1C1是由△ABC经过旋转变换得到的.
(1)问由△ABC旋转得到的△AA1C1的旋转角的度数是多少?并写出旋转中心的坐标;
(2)请你画出仍以(1)中的旋转中心为旋转中心,将△AA1C1、△ABC分别按顺时针、逆时针各旋转90°的两个三角形,并写出变换后与A1相对应点A2的坐标;
(3)利用变换前后所形成图案证明勾股定理(设△ABC两直角边为a、b,斜边为c).

manfen5.com 满分网 查看答案
某文具店九、十月出售了 五种计算器,其售价和销售台数如下表:
售价(台/元)1015162030

九月1220842
十月20401082
(1)该店平均每月销售多少台;
(2)在所考察的数据中,其中位数和众数分别是多少;
(3)经核算各种计算器的利润率均为20%,请你根据上述有关信息,选定下月应多进哪种计算器?并说明进价是多少?
查看答案
有一个可自由转动的转盘,被分成了4个相同的扇形,分别标有数1,2,3,4(如图所示),另有一个不透明的口袋装有分别标有数0,1,3的三个小球(除数不同外,其余都相同),小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积.
(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;
(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平.

manfen5.com 满分网 查看答案
在国家的宏观调控下,某县城的商品房成交价由今年1月份的5000元/m2下降到3月份的4500元/m2
(1)问2、3两月平均每月降价的百分率(保留1位有效数字)是多少?(可用计算器).
(2)如果房价继续回落,按此降价的百分率,你预测到5月份该市的商品房成交均价是否会跌破4000元/m2?请说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.