满分5 > 初中数学试题 >

阅读: ①按照某种规律移动一个平面图形的所有点,得到一个新图形称为原图形的像.如...

阅读:
①按照某种规律移动一个平面图形的所有点,得到一个新图形称为原图形的像.如果原图形每一个点只对应像的一个点,且像的每一个点也只对应原图形的一个点,这样的运动称为几何变换.特别地,当新图形与原图形的形状大小都不改变时,我们称这样的几何变换为正交变换.
问题1:我们学习过的平移、____________ 变换都是正交变换.
②如果一个图形绕着一个点(旋转中心)旋转n° (0<n≤360)后,像又回到原图形占据的空间(重合),则称该变换为该图形的 n度旋转变换.特别地,具有180˚旋转变换的图形称为中心对称图形.
例如,图A中奔驰车标示意图具有120°,240°,360°的旋转变换.
manfen5.com 满分网
图B的几何图形具有180°的旋转变换,所以它是中心对称图形.
问题2:图C和图D中的两个几何图形具有n度旋转变换,请分别写出n的最小值.
答:(图C)______;     答:(图D)______
问题3:如果将图C和图D的旋转中心重合,组合成一个新的平面图形,它具有n度旋转变换,则n的最小值为______
问题4:请你在图E中画出一个具有180°旋转变换的正多边形.(要求以O为旋转中心,顶点在直线与圆的交点上)
根据题目提供的信息,理解新的概念,根据概念进行解答. 【解析】 ①问题1:由于旋转,轴对称符合“新图形与原图形的形状大小都不改变”,故这样的几何变换为正交变换. 问题2:图C中,∠AOB=360°×=60°,图D中,∠AOB=360°×=45°, 问题3:由于60°和45°的最小公倍数是180°,故将图C和图D的旋转中心重合,组合成一个新的平面图形,它具有n度旋转变换,则n的最小值为180°,问题4: 故答案为:旋转,轴对称;60,45;180;答案不唯一,例如正方形、正六边形等,图略.
复制答案
考点分析:
相关试题推荐
例.如图①,平面直角坐标系xOy中有点B(2,3)和C(5,4),求△OBC的面积.
【解析】
过点B作BD⊥x轴于D,过点C作CE⊥x轴于E.依题意,可得
S△OBC=S梯形BDEC+S△OBD-S△OCE
=manfen5.com 满分网
=manfen5.com 满分网×(3+4)×(5-2)+manfen5.com 满分网×2×3-manfen5.com 满分网×5×4=3.5.
∴△OBC的面积为3.5.
(1)如图②,若B(x1,y1)、C(x2,y2)均为第一象限的点,O、B、C三点不在同一条直线上.仿照例题的解法,求△OBC的面积(用含x1、x2、y1、y2的代数式表示);
(2)如图③,若三个点的坐标分别为A(2,5),B(7,7),C(9,1),求四边形OABC的面积.
manfen5.com 满分网
查看答案
如图,AB经过⊙O的圆心,弦DF⊥AB于E,BF切⊙O于F,⊙O的半径为2.
(1)求证:BD与⊙O相切;
(2)若∠ABD=∠DFC,求DF的长.

manfen5.com 满分网 查看答案
某校为了了解九年级学生的体能素质,在400名学生中随机选择部分学生进行测试,其中一项为立定跳远.有关数据整理如下:
立定跳远成绩(分)学生人数(人)
10m
916
84
7n
6 
52
合计 
(1)依据图表信息,可知此次调查的样本容量为______
(2)在扇形统计图(如图)中表示立定跳远成绩为8分的扇形圆心角的度数为______°(精确到1°);
(3)已知测试成绩为10分的学生比成绩为7分的学生多10人,求m和n的值.

manfen5.com 满分网 查看答案
在平面直角坐标系xOy中,直线l与直线y=-2x关于y轴对称,直线l与反比例函数manfen5.com 满分网的图象的一个交点为M(3,m),试确定反比例函数的解析式.
查看答案
已知:如图,梯形ABCD中,AD∥BC,∠B=90°,AD=DC=2,∠ADC=120°,求梯形ABCD的周长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.