满分5 > 初中数学试题 >

如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方...

如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.
(1)求证:EB=GD;
(2)判断EB与GD的位置关系,并说明理由;
(3)若AB=2,AG=manfen5.com 满分网,求EB的长.

manfen5.com 满分网
(1)在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,得到∠GAD=∠EAB从而△GAD≌△EAB,即EB=GD; (2)EB⊥GD,由(1)得∠ADG=∠ABE则在△BDH中,∠DHB=90°所以EB⊥GD; (3)设BD与AC交于点O,由AB=AD=2在Rt△ABD中求得DB,所以得到结果. (1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD, ∴∠GAD=∠EAB, ∵四边形EFGA和四边形ABCD是正方形, ∴AG=AE,AB=AD, 在△GAD和△EAB中, ∴△GAD≌△EAB(SAS), ∴EB=GD; (2)【解析】 EB⊥GD. 理由如下:∵四边形ABCD是正方形, ∴∠DAB=90°, ∴∠AMB+∠ABM=90°, 又∵△AEB≌△AGD, ∴∠GDA=∠EBA, ∵∠HMD=∠AMB(对顶角相等), ∴∠HDM+∠DMH=∠AMB+∠ABM=90°, ∴∠DHM=180°-(∠HDM+∠DMH)=180°-90°=90°, ∴EB⊥GD. (3)【解析】 连接AC、BD,BD与AC交于点O, ∵AB=AD=2,在Rt△ABD中,DB=, 在Rt△AOB中,OA=OB,AB=2,由勾股定理得:2AO2=22, OA=, 即OG=OA+AG=+=2, ∴EB=GD=.
复制答案
考点分析:
相关试题推荐
在某市开展城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方来.
(1)求运往D、E两地的数量各是多少立方米?
(2)若A地运往D地a立方米(a为整数),B地运往D地30立方米.C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地.且C地运往E地不超过12立方米.则A、C两地运往D、E两地有哪几种方案?
查看答案
为了参加2011年威海国际铁人三项(游泳,自行车,长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟.求自行车路段和长跑路段的长度.
查看答案
完成下列各题:
(1)解方程:manfen5.com 满分网
(2)解方程组:manfen5.com 满分网
查看答案
完成下列各题:
(1)如图1,四边形ABCD中,AB∥CD,∠B=∠D,BC=6,AB=3,求四边形ABCD的周长.
(2)已知:如图2,在△ABC中,D为边BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC.求证:AB=AC.

manfen5.com 满分网 查看答案
完成下列各题:
(1)化简:manfen5.com 满分网
(2)计算:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.