如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.
(1)求证:△DHQ∽△ABC;
(2)求y关于x的函数解析式并求y的最大值;
(3)当x为何值时,△HDE为等腰三角形?
考点分析:
相关试题推荐
现在互联网越来越普及,网上购物的人也越来越多,订购的商品往往通过快递送达.当当网上某“四皇冠”级店铺率先与“青蛙王子”童装厂取得联系,经营该厂家某种型号的童装.根据第一周的销售记录,该型号服装每天的售价x(元/件)与当日的销售量y(件)的相关数据如下表:
每件的销售价x(元/件) | 200 | 190 | 180 | 170 | 160 | 150 | 140 |
每天的销售量y(件) | 80 | 90 | 100 | 110 | 120 | 130 | 140 |
已知该型号童装每件的进价是70元,同时为吸引顾客,该店铺承诺,每件服装的快递费10元由卖家承担.
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,求第一周销售中,y与x的函数关系式;
(2)设第一周每天的赢利为w元,求w关于x的函数关系式,并求出每天的售价为多少元时,每天的赢利最大?最大赢利是多少?
(3)从第二周起,该店铺一直按第(2)中的最大日盈利的售价进行销售.但进入第三周后,网上其他购物店也陆续推出该型号童装,因此第三、四周该店铺每天的售价都比第二周下降了m%,销售量也比第二周下降了0.5m%(m<20);第五周开始,厂家给予该店铺优惠,每件的进价降低了16元;该店铺在维持第三、四周的销售价和销售量的基础上,同时决定每件童装的快递费由买家自付,这样,第五周的赢利相比第二周的赢利增加了2%,请估算整数m的值.
(参考数据:
,
)
查看答案
如图,梯形ABCD中,AD∥BC,∠A=90°,点E为CD边的中点,BE⊥CD,且∠FBE=2∠EBC.在线段AD上取一点F,在线段BE上取一点G,使得BF=BG,连接CG.
(1)若AB=AF,EG=
,求线段CG的长;
(2)求证:∠EBC+
∠ECG=30°.
查看答案
某班有50名同学,男、女生人数各占一半,在本周操行评定中操行得分情况如图(1)统计表中所示,图(2)是该班本周男生操行得分的条形统计图:
图(1)
(1)补全统计表和条形统形图;
(2)计算全班同学的操行平均得分;
(3)若要在操行得分为5分的4名同学中选出两名同学作“本周明星”,用画树状图或列表的方法求出选为“本周明星”的正好是一名男同学和一名女同学的概率.
查看答案
先化简再求值:
,其中x≠y且x,y满足(x-y)(x+y-12)=0.
查看答案
若反比例函数
过面积为9的正方形AMON的顶点A,且过点A的直线y
2=mx-n的图象与反比例函数的另一交点为B(-1,a)
(1)求出反比例函数与一次函数的解析式;
(2)求△AOB的面积.
查看答案