满分5 > 初中数学试题 >

定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段...

定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的距离.
已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中四点.
(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离(即线段AB长)是______;当m=5,n=2时,如图2,线段BC与线段OA的距离(即线段AB长)为______
(1)理解新定义,按照新定义的要求求出两个距离值; (2)如答图2所示,当点B落在⊙A上时,m的取值范围为2≤m≤6: 当4≤m≤6,显然线段BC与线段OA的距离等于⊙A半径,即d=2; 当2≤m<4时,作BN⊥x轴于点N,线段BC与线段OA的距离等于BN长; (3)①在准确理解点M运动轨迹的基础上,画出草图,如答图3所示.由图形可以直观求出封闭图形的周长; ②如答图4所示,符合题意的相似三角形有三个,需要进行分类讨论,分别利用点的坐标关系以及相似三角形比例线段关系求出m的值. 【解析】 (1)当m=2,n=2时, 如题图1,线段BC与线段OA的距离(即线段AB长)=2; 当m=5,n=2时, B点坐标为(5,2),线段BC与线段OA的距离,即为线段AB的长, 如答图1,过点B作BN⊥x轴于点N,则AN=1,BN=2, 在Rt△ABN中,由勾股定理得:AB===. (2)如答图2所示,当点B落在⊙A上时,m的取值范围为2≤m≤6: 当4≤m≤6,显然线段BC与线段OA的距离等于⊙A半径,即d=2; 当2≤m<4时,作BN⊥x轴于点N,线段BC与线段OA的距离等于BN长, ON=m,AN=OA-ON=4-m,在Rt△ABN中,由勾股定理得: ∴d===. (3)①依题意画出图形,点M的运动轨迹如答图3中粗体实线所示: 由图可见,封闭图形由上下两段长度为8的线段,以及左右两侧半径为2的半圆所组成, 其周长为:2×8+2×π×2=16+4π, ∴点M随线段BC运动所围成的封闭图形的周长为:16+4π. ②结论:存在. ∵m≥0,n≥0,∴点M位于第一象限. ∵A(4,0),D(0,2),∴OA=2OD. 如答图4所示,相似三角形有三种情形: (I)△AM1H1,此时点M纵坐标为2,点H在A点左侧. 如图,OH1=m+2,M1H1=2,AH1=OA-OH1=2-m, 由相似关系可知,M1H1=2AH1,即2=2(2-m), ∴m=1; (II)△AM2H2,此时点M纵坐标为2,点H在A点右侧. 如图,OH2=m+2,M2H2=2,AH2=OH2-OA=m-2, 由相似关系可知,M2H2=2AH2,即2=2(m-2), ∴m=3; (III)△AM3H3,此时点B落在⊙A上. 如图,OH3=m+2,AH3=OH3-OA=m-2, 过点B作BN⊥x轴于点N,则BN=M3H3=n,AN=m-4, 由相似关系可知,AH3=2M3H3,即m-2=2n  (1) 在Rt△ABN中,由勾股定理得:22=(m-4)2+n2  (2) 由(1)、(2)式解得:m1=,m2=2, 当m=2时,点M与点A横坐标相同,点H与点A重合,故舍去, ∴m=. 综上所述,存在m的值使以A、M、H为顶点的三角形与△AOD相似,m的取值为:1、3或.
复制答案
考点分析:
相关试题推荐
某汽车在刹车后行驶的距离s(单位:米)与时间t(单位:秒)之间的关系得部分数据如下表:
时间t(秒)0.20.40.60.81.01.2
行驶距离s(米)2.85.27.28.81010.8
假设这种变化规律一直延续到汽车停止.
(1)根据这些数据在给出的坐标系中画出相应的点;
(2)选择适当的函数表示s与t之间的关系,求出相应的函数解析式;
(3)①刹车后汽车行驶了多长距离才停止?
②当t分别为t1,t2(t1<t2)时,对应s的值分别为s1,s2,请比较manfen5.com 满分网manfen5.com 满分网的大小,并解释比较结果的实际意义.

manfen5.com 满分网 查看答案
已知,如图1,△ABC中,BA=BC,D是平面内不与A、B、C重合的任意一点,∠ABC=∠DBE,BD=BE.
(1)求证:△ABD≌△CBE;
(2)如图2,当点D是△ABC的外接圆圆心时,请判断四边形BDCE的形状,并证明你的结论.

manfen5.com 满分网 查看答案
某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地决策,自来水公司随机抽取部分用户的用适量数据,并绘制了如下不完整统计图(每组数据包括右端点但不包括左端点),请你根据统计图解决下列问题:
manfen5.com 满分网
(1)此次调查抽取了多少用户的用水量数据?
(2)补全频数分布直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数;
(3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?
查看答案
如图,为测量江两岸码头B、D之间的距离,从山坡上高度为50米的A处测得码头B的仰角∠EAB为15°,码头D的仰角∠EAD为45°,点C在线段BD的延长线上,AC⊥BC,垂足为C,求码头B、D的距离(结果保留整数).

manfen5.com 满分网 查看答案
如图,正比例函数y=kx(x≥0)与反比例函数y=manfen5.com 满分网的图象交于点A(2,3),
(1)求k,m的值;
(2)写出正比例函数值大于反比例函数值时自变量x的取值范围.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.