已知Rt△ABC中,直角边AC=3,BC=4,P、Q分别是AB、BC上的动点,且点P不与A、B重合.点Q不与B、C重合.
(1)若CP⊥AB于点P,如图1,△CPQ为等腰三角形,这时满足条件的点Q有几个?直接写出相等的腰和相应的CQ的长(不写解答过程)
(2)当P是AB的中点时,如图2,若△CPQ与△ABC相似,这时满足条件的点Q有几个?分别求出相应的CQ的长?
(3)当CQ的长取不同的值时,除PQ垂直于BC的△CPQ外,其余的△CPQ是否可能为直角三角形?若可能,请说明所有情况?若不可能,请说明理由.
考点分析:
相关试题推荐
在以点O为坐标原点的平面直角坐标系中,抛物线y=ax
2+4ax+3a与轴交于A、B两点(OA>OB)与y轴负半轴交于点C,且OC=3OB.
(1)求抛物线的解析式;
(2)设直线x=m与抛物线交于点D,与线段AC交于点E,当线段DE的长取最大值时,求m的值和DE的长;
(3)设⊙0
1经过A、O、C三点,点M为弧AO上一点.求
值.
查看答案
一家化工厂原来每月利润为120万元,从今年1月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1至x月(1≤x≤12)的利润的月平均值w(万元)满足w=10x+90,第二年的月利润稳定在第1年的第12个月的水平.
(1)设使用回收净化设备后的1至x月(1≤x≤12)的利润和为y,写出y关于x的函数关系式,并求前几个月的利润和等于700万元;
(2)当x为何值时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x个月的利润和相等;
(3)求使用回收净化设备后两年的利润总和.
查看答案
在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:
摸球的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次数m | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的频率 | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
(1)请估计:当n很大时,摸到白球的频率将会接近______;
(2)假如你去摸一次,你摸到白球的概率是______,摸到黑球的概率是______;
(3)试估算口袋中黑、白两种颜色的球各有多少只?
(4)解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题有办法了.这个问题是:在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)请你应用统计与概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法.
查看答案
如图,以Rt△ABC的直角边AB为直径作⊙O,与斜边AC交于点D,过点D作切线DE交BC于E
(1)求证:E为BC的中点;
(2)连接AE,当DE∥AB时,求∠CAE的正切值.
查看答案
正方形网格中,△ABD如图放置,其顶点A、B、D都在格点上.
(1)在格点上,找点C,使△DCB∽△ABD,请画出△DCB(仅画图即可,不必说明理由)
(2)求cos∠ABD的值.
查看答案