满分5 > 初中数学试题 >

已知Rt△ABC中,直角边AC=3,BC=4,P、Q分别是AB、BC上的动点,且...

已知Rt△ABC中,直角边AC=3,BC=4,P、Q分别是AB、BC上的动点,且点P不与A、B重合.点Q不与B、C重合.
(1)若CP⊥AB于点P,如图1,△CPQ为等腰三角形,这时满足条件的点Q有几个?直接写出相等的腰和相应的CQ的长(不写解答过程)
(2)当P是AB的中点时,如图2,若△CPQ与△ABC相似,这时满足条件的点Q有几个?分别求出相应的CQ的长?
(3)当CQ的长取不同的值时,除PQ垂直于BC的△CPQ外,其余的△CPQ是否可能为直角三角形?若可能,请说明所有情况?若不可能,请说明理由.
manfen5.com 满分网
(1)当CP为等腰三角形的底边时作CP的垂直平分线,交BC于Q,则△CPQ为等腰三角形;当CP为腰时,在BC上截取CQ=CP即可,所以这样的点有两个,分别求出即可; (2)根据题意画出符合条件的三角形即可求出Q的位置,进而求出出相应的CQ的长; (3)过Q作QP⊥BC,交AB于P点,连接CP,则△CPQ为直角三角形,作∠CAB的平分线AO,交BC于O点.作OP1⊥AB于P1点.设CO=t,则OP1=t,CD=2t,OB=4-t.先根据相似三角形△ABC∽△OBP1的性质求得t值,即得到线段CD的长度,再分情况讨论.①Q与点D重合时,以CQ为直径的圆与AB相切,②Q点在线段CD上时(不与C、D重合),0<CQ<3,以CQ为直径的圆与AB相离,③Q点在DB上时(不与D、B重合),3<CQ<4,以CQ为直径的圆与AB有两个交点P2、P3. 【解析】 (1)当CP为等腰三角形的底边时作CP的垂直平分线,交BC于Q, 则腰是CQ=PQ; 此时CQ=BC=1.5; 当CP为腰时,在BC上截取CQ=CP, 则腰是CP=CQ′, 此时CQ=CP==2.4; (2)当P是AB的中点时,如图2,若△CPQ与△ABC相似,这时满足条件的点Q有3个, ①当△COQ∽△BCA,时, ∴=, ∴CQ=BC=2; ②△PQ′B∽△CAB时, ∴, ∵AP=BP=AB=2.5,BC=4, ∴, ∴BQ′=, ∴CQ′=4-=; ③△CPQ″∽△BCA时, ∴, ∴, ∴CQ″=; (3)可能. 过Q作QP⊥BC,交AB于P点,连接CP,则△CPQ为直角三角形,作∠CAB的平分线AO,交BC于O点.作OP1⊥AB于P1点. ∴CO=OP1以O为圆心,OC为半径作⊙O,⊙O与AB相切,切点为P1,与CB的交点为D. 设CO=t,则OP1=t,CD=2t,OB=4-t. 由△ABC∽△OBP1,得 , ∴=, 解得:t=1.5, ∴CD=3, ∴当Q与点D重合时,以CQ为直径的圆与AB相切,切点为P1,连CP1、P1Q,△CP1Q为直角三角形,此时共有两个直角三角形, 当Q点在线段CD上时(不与C、D重合),0<CQ<3,CQ为直径的圆与AB相离,此时只有一个直角三角形CQP.(9分) 当Q点在DB上时(不与D、B重合),3<CQ<4,以CQ为直径的圆与AB有两个交点P2、P3.分别连接P2、P3与点C和Q,得直角三角形CQP2和CQP3,此时有三个直角三角形.
复制答案
考点分析:
相关试题推荐
在以点O为坐标原点的平面直角坐标系中,抛物线y=ax2+4ax+3a与轴交于A、B两点(OA>OB)与y轴负半轴交于点C,且OC=3OB.
(1)求抛物线的解析式;
(2)设直线x=m与抛物线交于点D,与线段AC交于点E,当线段DE的长取最大值时,求m的值和DE的长;
(3)设⊙01经过A、O、C三点,点M为弧AO上一点.求manfen5.com 满分网值.
manfen5.com 满分网
查看答案
一家化工厂原来每月利润为120万元,从今年1月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1至x月(1≤x≤12)的利润的月平均值w(万元)满足w=10x+90,第二年的月利润稳定在第1年的第12个月的水平.
(1)设使用回收净化设备后的1至x月(1≤x≤12)的利润和为y,写出y关于x的函数关系式,并求前几个月的利润和等于700万元;
(2)当x为何值时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x个月的利润和相等;
(3)求使用回收净化设备后两年的利润总和.
查看答案
在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:
摸球的次数n1001502005008001000
摸到白球的次数m5896116295484601
摸到白球的频率0.580.640.580.590.6050.601
(1)请估计:当n很大时,摸到白球的频率将会接近______
(2)假如你去摸一次,你摸到白球的概率是______,摸到黑球的概率是______
(3)试估算口袋中黑、白两种颜色的球各有多少只?
(4)解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题有办法了.这个问题是:在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)请你应用统计与概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法.
查看答案
如图,以Rt△ABC的直角边AB为直径作⊙O,与斜边AC交于点D,过点D作切线DE交BC于E
(1)求证:E为BC的中点;
(2)连接AE,当DE∥AB时,求∠CAE的正切值.

manfen5.com 满分网 查看答案
正方形网格中,△ABD如图放置,其顶点A、B、D都在格点上.
(1)在格点上,找点C,使△DCB∽△ABD,请画出△DCB(仅画图即可,不必说明理由)
(2)求cos∠ABD的值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.