考点分析:
相关试题推荐
平面直角坐标系中,▱ABOC如图放置,点A、C的坐标分别为(0,3)、(-1,0),将此平行四边形绕点O顺时针旋转90°,得到▱A'B'OC'.
(1)若抛物线过点C,A,A',求此抛物线的解析式;
(2)▱ABOC和▱A'B'OC'重叠部分△OC'D的周长;
(3)点M是第一象限内抛物线上的一动点,问:点M在何处时△AMA'的面积最大?最大面积是多少?并求出此时M的坐标.
查看答案
我市某镇组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:
脐 橙 品 种 | A | B | C |
每辆汽车运载量(吨) | 6 | 5 | 4 |
每吨脐橙获得(百元) | 12 | 16 | 10 |
(1)设装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,求y与x之间的函数关系式;
(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;
(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.
查看答案
如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD丄PA,垂足为D.
(1)求证:CD为⊙O的切线;
(2)若DC+DA=6,⊙O的直径为10,求AB的长度.
查看答案
如图,正方形ABCD的四个顶点分别在四条平行线l
1、l
2、l
3、l
4上,这四条直线中相邻两条之间的距离依次为h
1、h
2、h
3(h
1>0,h
2>0,h
3>0).
(1)求证:h
1=h
3;
(2)设正方形ABCD的面积为S,求证:S=(h
2+h
1)
2+h
12;
(3)若
,当h
1变化时,说明正方形ABCD的面积为S随h
1的变化情况.
查看答案
在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A
1B
1C.
(1)如图1,当AB∥CB
1时,设A
1B
1与BC相交于D.证明:△A
1CD是等边三角形;
(2)如图2,连接AA
1、BB
1,设△ACA
1和△BCB
1的面积分别为S
1、S
2.求证:S
1:S
2=1:3;
(3)如图3,设AC中点为E,A
1B
1中点为P,AC=a,连接EP,当θ=______°时,EP长度最大,最大值为______.
查看答案